REAL 3D PRO-1000

Professional Series

‘ | _-. hJ-m
| Iy 0 7

i

Developer’s Guide

REAL3D PRO-1000
This document contains Hot
 Links, Bookmarks and Thumbnails for your convenience.

1. Click the mouse on any
 Real 3D Logo to jump to the
 Developer's Guide "Contents" section.

2. Click the mouse on any
 "red text" to jump to that section
 of the document.

REAL 3D PRO-1000

Professional Series

Developer’s Guide

December 1997

Version 4.0e

Copyright Real 3D, 1997
All Rights Reserved

a Lockheed Martin Company

IMPORTANT NOTICE

While every effort has been made to ensure the quality of this document, the information and material contained
in this book is provided “as is”, without warranty of any kind, expressed or implied, including without limitation any
warranty concerning the accuracy, adequacy, or completeness of such information or material or the results to
be obtained from using such information or material. Neither Real 3D, Lockheed Martin Corporation nor the
authors shall be responsible for any claims attributed to errors, omissions, or other inaccuracies in the information
or material contained in this book. In no event shall the Corporation be liable for direct, indirect, special, incidental,
or consequential damages arising from the use of such information or material.

This document contains the intellectual property of Real 3D, a Lockheed Martin Company, and may not be copied
or duplicated in any form, in whole or in part, without the prior written permission of Real 3D or Lockheed Martin
Corporation.

The Real 3D® products are protected by one or more of the following patents:
4205389, 4446529, 4583185, 4586038, 4612482, 4692880, 4714428, 4715005, 4727365,
4811245, 4821212, 4825391, 4841467, 4855937, 4862388, 4868771, 4888711, 4905164,
4958305, 4965745, 4974176, 5126726, 5187754, 5191642, 5268996, 5293467, 5319744,
5357579, 5367615, 5420970.

V/

i Real 3D® is a registered trademark of Lockheed Martin Corporation. (Reg. US. Pat. & TM Office)
All other product names and services identified throughout this publication are trademarks or registered
trademarks of their respective companies. Such uses, or the use of any trade name, is not intended to convey
endorsement or other affiliation with this publication.

Caution: Use of Real 3D and Lockheed Martin Corporation products for the unauthorized copying, modification,
distribution, or creation of derivative works from copyrighted works such as images, photographs, text, drawings,
films, videotape, music, sound recordings, recorded performances, or portions thereof may violate applicable
copyright laws.

Manufactured in the United States of America.

Real 3D

a Lockheed Martin Company
12506 Lake Underhill Road
Orlando, Florida 32825-5002

web: http://www.real3d.com/

e—mail: real3d@real3d.com

tele: 1-800-393-7730 (U.S.A))
1-407-306-7302 (Worldwide)

fax: 1-407-306-3358 (Worldwide)

http://www.real3d.com/

CONTENTS — NEXT PAGE

REAL 3D Developer’s Guide

....................................... 1
Title Pageo 2.
Important NOtICe e 3.
CONtENES . . . 4.
INtrodUCHION e 28 .
About This GUIde. 28
About This Software 30
Hardware OVerview e e e e 31
System Architecture. 31
System Configurations 33
Display Interface 34.
Hardware Capacity. 35
Co0rdiNate SetS. . . .ttt e 35.
POlYgoNS. . .. 35
TEXIUI . . 35
Concepts and Object Data Types.ot e 36
API Concepts and ConveNLioNS. 36
Blending and Levels-of-Detail 36
Lighting and Weather Effects. 37
Coordinate SYStemMS 38
Order of Rotation ANgIes. ot e 38
O . e 38

Developer’s Guide 4 Version 4.0e

CONTENTS — NEXT PAGE

LOCal ..o 39
VIBWPOINT. . . 40
Offline Formatting MOde. 41
Dynamic Paging.o 41.
Video OUutput CONLIOIS.ot 43
Gamma COITECHION. . . . e e e e e 43
Soft EAge Blendingo 43
APl Data TYPeS. . . . it 44
DBVICE . . .t 44
VWO . o o 45
VIBWPOINT . o 45
Database. 45
MOdElS . o 46
Pre-formatted 46.
RUN—IME. . . . 46
INSTANCING 46.
ANIMALION SEQUENCES o oottt e e e e e 47
Culling NOdES.o 47 .
LOD Culling NOdES.o e e e e AB
Articulated Part Culling NOdes. 48
Animation Culling NOGES. e 48
Instance Culling NOOESot e 48
Instance Reference Culling Nodes i i 48
Point Lights 49.
INStaNCE SelS . . . o 49.

Developer’s Guide 5 Version 4.0e

CONTENTS — NEXT PAGE

POlYgONS. . . o 50
Layered Polygons. 50
TraNSIUCENCY.o 50.
High Priority POlygoNS. e e 50
Shading and Lighting. 50
TEXIUIE . . o e 51
COlOr o 51

Level-of-Detail (LOD) Table. e e e 51

Color Table. . ..o e Bl

Functional Groupso 52
Configuration FUNCLIONS e e 52
Hardware Interface and Global Functions. 52
Device FUNCHIONS e e e 54
VIEWPOIt FUNCLIONS. e e e 56
Database FUNCLIONS. e e e e e 58
VIeWPOINt FUNCHIONS. e e e e e e e 59
Blend Table FUNCLIONS. e e e e e 60
Color Table FUNCHIONS e e e 61
Model FUNCHIONS. e e e e e 62
ANIMation FUNCLIONS e e e e 67
Culling Node FUNCHIONS.ottt e e 68
LOD Culling Node FUNCHIONS vt e e e e e e e 70

Developer’s Guide 6 Version 4.0e

CONTENTS — NEXT PAGE

Articulated Part Culling Node Functions. e 71
Animation Culling Node FUNCLIONS e 73
Instance Culling Node FUNCLIONS. e 74
Instance Reference Culling Node Functions. i, 75
Point Light FUNCLIONS. e 76
Instance Set FUNCLIONS 77
Polygon FUNCtions. A8
VerteX FUNCHIONS. e e e e e 80
Texture FUNCHIONS. e 81
Microtexture FUNCHIONS e e 82
Matrix FUNCHONS. e e 83
MultiGen Loader FUNCLIONS oo e 85
SAMPLE APPLICATIONS e e 86
Sample d. . 87.
SaAMPIE 2. . 90.
SaAMPlE 3. 93
SaAMPIE 4. o 98

Developer’s Guide 7 Version 4.0e

CONTENTS — NEXT PAGE

FUNCTION REFERENCE e 102
Configuration FUNCLIONS e e 102
PRO_ConfigureMemOryot e e e 102
PRO_AbbreviatedConfigureMemory.t 104
PRO_SetLogicalunitOn 106
PRO_SetLogicalUnitOff 107
Hardware Interface and Global Functions., 108
PRO NI, & e e e e e e e e e 108
PRO_INIEOMliNG e 110.
PRO S 0P, . .ttt e 111
PRO_DisplayDatabase.ttt 112
PRO_LoadModelDynamically 113
PRO_UnloadDynamicModel 115
PRO_SetGenlocko 116.
PRO_SetUpdateRate 117
PRO_SetOverloadMode. 118
PRO_SetDisplaySelect. 119
PRO_SetForegroundColar. 120
PRO_SetBackgroundColoro 121
PRO _SetGamma.ottt 122.
PRO_SetPointLightDetail. 123
PRO_SetPointLightFeatureType. e e e 124
PRO_SetPointLightSize 125
PRO_SetPointLightPolygon. 126
PRO_SetMicrotextureMapCouNnt. 127

Developer’s Guide 8 Version 4.0e

CONTENTS — NEXT PAGE

PRO_SetTexturePageSize. 128
PRO _Reloadlogo. 129
PRO_GetNumberOfLogicalUnits. 130
PRO_GetNumberOfAvailableTexels. 131
PRO_GetMicrotextureMapCoURNL 132
PRO_GetFirmwareReVisioN. 133
PRO_GetModelNUMbEr e e 134
PRO_GetRealtimeClockCount 135
PRO_GetProcessingTimeottt e e e e 136
PRO_GetFrameRateEStimate. 137
PRO_GetPolygonMemorySize 138
PRO_GetDefaultDeVviCeo 139
DeVviCe FUNCHONS . . . oo e 140
PRO_Device Class CONSIIUCIOL oottt e e e e e e e e e e e e e e 140
PRO_Device Class deStrUCIOr 142
Gl tatUS . . . oo 143
A AChVIBWPO 144.
DetaChVIBWPOIT 145.
SelGaAMMA 146
SetGammaRGB. 147.
ACHIVAIEGAMMA. .« . . vttt et e e e e 149.
DeactivateGamma. 150
SaveGammaToROM. 151
WriteBlendMemOry 152
ActivateBlendMemory. 154

Developer’s Guide 9 Version 4.0e

CONTENTS — NEXT PAGE

DeactivateBlendMemory. 155
SaveBlendMemoryTOROM. 156
SetForegroundCoOloro 157
SetForegroundColor 158
SetBackgroundColor. 159
SetBackgroundColor. 160
SetDisplaySelect 161.
SetOverloadMode 163
GetlogicalUnit. 164.
IsValidDisplaySelect 165
GetSyncSelectinfo. 166
HasAttaChedVIEWPOITSo 167
GetGaMMA. . . oo 168
GetForegroundColor. 169
GetBackgroundColor. e 170
GetDisplaySelect. 171.
GetOverloadMode. 172
GetLineRate. 173
ISHIGNRES . . . oo 174
HasEXpandedTeXtUre e e e 175
GetFirmwareReVISION 176
GetModelNUMDET. e 177
GetRealtimeClockCount. 178
GetProCesSSINGTIMe. . . .o 179
GetFrameRateEStimate 180
GetCurrentFrameCoUNt e 181
GetHWPOlYgONMEMOIYSIZE . . . e e 182

Developer’s Guide 10 Version 4.0e

CONTENTS — NEXT PAGE

VIewport FUNCHIONS. o 183
PRO_Viewport Class CONSIIUCTAL.ot e e e 183
PRO_Viewport class destructar. 184
G S ALUS .« . . e 185
AttachDefaultBlendTable 186
AttachDefaultDatabase. 187
AttachBlendTable. 188
AttachDatabase 189.
AtACNVIBWPOINT. . . . oo 190.
DetaChVIeWPOINt o 191.
AttachChildVIEWPOIT 192
DetachChildVIEeWpOrt. 193
SetFieldOIEW . . . 194.
SetFieldOfVIeW 195.
SetDisplayEXteNntS e 196
SetSunllluminationData 197
SetSUNVECIOL 198
SetFogParameters. e 199
SetFOgRANGES. . . . o 201.
SetFOgCOIOr. . . o 202
SetLightFogCoIor.o 203
SetLightSourceColor. 204
SetLightSourceParameters 205
SetLightSourceStartRange. 206
SetLightSourceEXtent. 207

Developer’s Guide 11 Version 4.0e

CONTENTS — NEXT PAGE

SetLobEParameters. 208
SetMieWpPOrtOf . . . 209.
SEtVIEWPOITON. . . . 210.
SetDisplaySelect 211.
SetlnvertFlags 212.
GetVIEWPOINt 213.
GetAttachedDeVvICe 214
GetFieldOfVIEW 215.
GetFIeldOf VW . . . 216.
GetDISPlayEXIENTS. . . . 217
GetSunllluminationData 218
GElSUNVECIOr. . . oo 219.
GetFogParameters 220
GetFogRaNges. 221.
GetFOgCOlOr. . . . 222
GetLightFogCoIOr.o 223
GetLightSourceCOlor. e 224
GetLightSourceParameters 225
GetLobeParameters e 226
GetPIIONIY . . o 227
Database FUNCHONS. 228
PRO_Database class COnStructor. i 228
PRO_Database class destructar. 229
Gl tatUS . . . oo 230
AttachModel 231

Developer’s Guide 12 Version 4.0e

DetachModel e 232

ActivateAlIModels 233
DeactivateAlIModels 234
HasACtiveEMOdeIS. 235
VIeWPOoInt FUNCLIONS. e e e e e e e 236
PRO_Viewpoint Class CONSIIUCIQr. e 236
PRO_Viewpoint class destructar. e 237
Gl tatUS . . . oo 238
SetPOSItION 239
SetPOSItION e 240
SetOrientation 241.
SetONENtAION oo e 242.
SetOrientation 243.
GetPoOSItION. e 244
GetPOSItION. . . e 245
GetOreNtAtiONt 246.
GetOrENtAliON 247.
GetLocalForward. 248.
Getlocalleft. 249
GetlocalUp. . . . 250
AtACNVIBWPOINT. . . .o 251.
DetachViewpointFromParent. 252
Blend Table FUNCLIONS. e 253
PRO _LOD Table class CONSIIUCIOLo e 253
PRO _LOD Table class destructor s 254

Developer’s Guide 13 Version 4.0e

G S AU . . .ttt e e 255

SetRangeBlendParameters. 256
SetSizeBlendParameters 257
GetRangeBlendParameters. 258
GetSizeBlendParameters. 259
GetAllocatedTableSize 260
Color Table FUNCLIONS 261
PRO_Color_Table class CONStIUCIQr. e 261
PRO_Color_Table class destructar. 262
Gl tatUS . . . oo 263
SetCOIOr . .. 264
St OIOr .« . oo 265
GetAllocatedTableSize 266
Model FUNCHIONS. 267
PRO_Model class constructar. o 267
PRO_Model class constructar. 269
PRO_Model class CoNStruCtOr. oo e e e e 270
PRO_Model class CONStrUCIOr.ot e e e e e e e e et e e 271
PRO_Model Class desStrUCtOr. e 272
GetMOdelStatus. e 273.
Sl OSItION . . e 274
SetPOSItION e 275
SetPOSItION e 276
Sl OSItION . . e 277
SetONENIAION o o 278.

Developer’s Guide 14 Version 4.0e

CONTENTS — NEXT PAGE

GetloCalleft. . . . 305
Gethocalleft. . . . 306
Getlocalleft. . ..o 307
GetLocalUp. e 308
GetLocalUp. e 309
GetlocalUp. . . . 310
GetlocalUp.o e 311
GetNumberOfANIMAatiONSEQUENCES o oo oo ettt 312
GetANIMAlIONSEQUENCE o ittt e e e 313
GetANIMAatiONSEQUENCE o ottt e e e e e e e 314
GetAnimationSequenCeNAME.ot 315
GetNumberOfArticulatedParts. 316
GetArticulatedPartMatrixIndex. 317
GetArticulatedPartName. 318
GetNuUmberOfTEXIUrEMaAPS o o 319
GetTextureMapName 320
ProcessimmediateModeData. 321
ProcessMorphedPolygons. 322
AddCUlliNgNOdE. e 323.
AddChIld 324
AddPOINTLIgNt . . .o 325.
AddINStANCES L o 326.
AdAPOlYgON . . . e 327
AddChIld e 328
EnableVertexSharing. 329
DisableVertexSharing e 330

Developer’s Guide 16 Version 4.0e

CONTENTS — NEXT PAGE

SetAutoDeleteCullingData.t 331
SetAutoDeletePolygonData. 332
SetAutoDestructCullingData 333
SetAutoDestructPolygonDatao 334
StoreArticulatedPart 335
StOre ANIMAatiONSEQUENCE. e e e 336
StoreTextureData. 337.
StoreTextureData. 338
SV, . o 339
ANimation FUNCLIONS e e e 340
AnimationStansVisible 340
AnimationEndsVisible. 341
AnimationStartsinvisible. 342
AnimationEndsInvisible. 343
ACHVALE S EOUEBNCE ottt 344
DeactivateSEqUENCE. oot e 345
AnimationRunsForward 346
AnimationRunsBackwards. 347
AnimationRUNSMIITOred 348
AnimationisUserControlled 349
ANIMatiONRUNSFOrBVET. e e e e 350
SetAnimationCycCleTime 351
SetAnimationCycleTime. e 352
SetAnimationRepeatCouNnt. 353
SetFrameACHIVE. . . . 354.

Developer’s Guide 17 Version 4.0e

CONTENTS — NEXT PAGE

SetFramelnactive. 355.
GetAniMationCyCIETIME. 356
GetAnimationCyCleTime. 357
GetNumberOfAnimationFrames 358
GetCurrentFrame. 359
GetANIMAatiONSTALE o 360
Culling Node FUNCLIONS.o e e e e e 361
PRO_Culling_Node class CONSIIUCIOL 361
PRO_Culling_Node class destructor i 362
Gl atUS . . . oo 363
ACtIVALENOTE . . . e 364
DeactivateNode 365.
AddCIld . . . 366
AddChIld 367
AddPoiNtLight 368.
AddINStanCeS et 369.
DetachChild e 370
DetachChild e 371
AttachColorTable. 372.
SetRaNgeLOD 373.
SetSIZELOD . . o o e 374
S R EAIUNE Y P . . . o 375.
SetGroupLayerNUumber. 376
SetVolumeSizeClamp 377
SetAutoDeleteCullingData. 378

Developer’s Guide 18 Version 4.0e

CONTENTS — NEXT PAGE

SetAutoDeletePolygonData. 379
SetAutoDestructCullingData 380
SetAutoDestructPolygonDatao 381
FormatAndFIushPolygons 382
GetFRatUIE Y P, . . 383.
GetBoUuNdiNgBOX 384.
GEetLODNUMD L. . o e e e 385.
GetGroupLayerNUMDer 386
GetCentroid 387
HasASSOCIatedMaLriX 388
LOD Culling Node FUNCLIONS oot e e 389
PRO_LOD_Culling_Node class Constructor.t 389
PRO_LOD_Culling_Node class destructort e 390
AddChIld 391
AddCIld . . . 392
Articulated Part Culling Node Functions. e 393
PRO_6DOF_Culling_Node class CONStrUCIOr. . . . oo e e e 393
PRO_6DOF_Culling_Node class CONSIIUCIOr. . . . oo e e e 394
PRO_6DOF_Culling_Node classdestructor. i 395
SetNAME. . . 396
Sl OSItION . . e 397
SetPOSItION 398
SetOrientation 399.
SetONENIAtION oo e 400.
SetONENtAtION oo e 401.

Developer’s Guide 19 Version 4.0e

CONTENTS — NEXT PAGE

SetMOtiONEXIEeNtS. e A02
SetMotionEXtents. e e . 403
S tMaALIIX . ..o e 404
ReplaCceMatrixXo 405.
GetNaMe. . . o 406
GetPoOSItION. 407
GetOrieNtalioN 408.
Gt X . . . oo 409
Animation Culling Node FUNCHIONS oo e 410
PRO_Animation_Culling_Node class Constructor. 410
PRO_Animation_Culling_Node class destructor. e 411
AddChIld 412
AddChild 413
SetNAME. . . 414
GetNaAME. . . o 415
GetANIMAatiONSEUENCE o ottt et e e e e e e 416
Instance Culling Node FUNCLIONS. e 417
PRO_Instance_Culling_Node e 417
ProcessimmediateModeData. 418
EnableVertexSharing. 419
DisableVertexSharingo e 420
Instance Reference Culling Node Functions. 421
PRO_Instance_Reference_Culling_Node class constructar. 421
SetinstanCeLocationo 423
GetInStanCeLoCation.ot 424

Developer’s Guide 20 Version 4.0e

CONTENTS — NEXT PAGE

Point Light FUNCLIONS. 425
PRO_Point_Light class CONSIIUCtOL e 425
PRO_Point_Light class destruCtor e 426
SEtCOIOr . . . 427
ST =] (@0][PP 428
SetPOSItION e 429
GetPOSItION. . . e 430

INStance Set FUNCHIONS e 431
PRO _Instance _Set class CONStIUCIAr. oottt e e 431
PRO _Instance_Setclass destruCtar.t 432
S COIOr . . 433
SetCOIOr . . . 434
SetPOSItIONo 435
GetPoSItION. e 436
SetActivelnstanCeCOUNL. oo 437
GetActivelnstanceCount. A38
GetNUMberOfINSIaNCESo 439

Polygon FUNCLIONS. e e e 440
PRO_Polygon Class CONSIIUCIOrot e e e 440
PRO_Polygon class destructor e 441
AdAVEIMEX . . . e 442
AdAChild 443
DetachChild 444
AttaChTeXtUIe. . . . 445.
DetaChTeXIUIE . . . o o 446.

Developer’s Guide 21 Version 4.0e

CONTENTS — NEXT PAGE

AAChMICIOTEXIUNE 447
DetaChMICIOTEXIU oo e e e e 448
Sl OIOr .« . oo e 449
St OIOr .« . oo 450
SetColorindexX. 451.
SetSensorColOrINAEXot 452
EnableLightingEffects. 453
DisableLightingEffects o 454
SetTraNSIUCENCY. . . . oot 455,
SetLightModifier 456.
SetHIGNPIIONItY 457.
PolygonisLayered 458
ISDoubleSided 459.
DoSmMoothShading 460
DoFlatShading. 461.
ISNotShaded. e 462
VerticeSAreCIOCKWISEo 463
VerticesAreCounterCIOCKWISEot e 464
SetXSMOOthiNgo 465.
SetYSMOOTNINGot 466.
SEtXMIITOr . o o 467

S Y MITTOr o 468
SetNPScale e 469
SetTranslucencyPatternSelect. 470
EnableAutoVertexDelete. A71
DisableAutoVertexDelete e 472

Developer’s Guide 22 Version 4.0e

CONTENTS — NEXT PAGE

GetLODNUMD Y. . . o 473.
GetVerteXCoUN . . . 474.
GetCompressedVerteXCouNt.ot e e ATD
Gt I EX . o o 476
ISTEXTUIEd. e 477
VerteX FUNCHIONS. 478
PRO_Vertex class CONSIrUCTAr. oot e e e e e 478
PRO_Vertex class CONStIUCIQr. e e e e e e e 479
PRO_Vertex class deStruCtar. 480
SetCoOrdiNAtes 481.
SetCOOrdINALES. ottt 482.
SetMorphCoordinates. 483
SetTextureCoordiNatesS.o e 484
SetVerteXNOrmal 485.
SetFixedShadingIntensity. 486
O SV BIEX . . . 487
SCalEV I X, . o o 488
TransformVEIEX. 489.
GetCoordiNates 490.
GetCOOrdINALES vttt 491.
GetTextureCoordiNates. oo vttt e e e 492
GetVertexNormal. 493.
ISTEXtUred. e 494
ISShaded. 495

Developer’s Guide 23 Version 4.0e

CONTENTS — NEXT PAGE

Texture FUNCHIONS. e e e e e . 406
PRO_Texture Class CONSIUCIAr. ottt e e e e s 496
PRO_Texture Class CONSIUCIAr. i e e s 498
PRO_Texture class destructar. it e e e 500
ISCONIOUITEXIUNE. . . o ottt e e e e e e e 501
SetContourThreshold e 502
SetContourThreshold 503
EnableAlpha. e 504
DisableAlpha 505.
SetTextureFileName 506
KeepDataAfterLoadingt e 507
FreeDataAfterLoading. ot e 508
DeleteDataAfterLoading.ot 509
GetTextureFileName. 510
GetOrigTextureMapWidth. e 511
GetOrigTextureMapHeight. 512
ISTEXIUTERGB. 513.
ISMICTOTEXIUNE . . o o ot e e e e e e e e e e e e 514.

Microtexture FUNCLIONS e 515
PRO_MicroTexture class CONStIUCION.ottt e e 515
PRO_MicroTexture class CONStruCtor.o e 517
PRO_MicroTexture class destruCtor. e e 518

Developer’s Guide 24 Version 4.0e

Matrix FUNCLIONS. 519

PRO_Matrix Class CONStrUCIOr.o 519
PRO_Matrix Class desStrUCtOr.o e e 520
Gl tatUS . . . oo 521
SetPOSItION e 522
Sl OSItION . . e 523
SetPOSItION e 524
SetOrientation 525.
SetOrientation 526.
SetONENtAtION o o e 527.
SetLocalForward 528.
Setlocalleft. 529
SetlocalUp. . . . 530
GetPOSItION. . . e 531
GetPoSItION. e 532
GetPoSItION. e 533
GetOrEeNtalioN 534.
GetOrieNtatioNt 535.
GetLocalForward. 536.
GetloCalleft. . . . 537
GetLocalUp. 538
AttachMatrixX. e 539
DetaChFromParent 540

Developer’s Guide 25 Version 4.0e

CONTENTS — NEXT PAGE

MultiGen Loader FUNCHLIONS oot 541
PRO_MGen_Model class CONStruCtor e 541
PRO_MGen_Model class destructoro 543
GetPolyCoUNt. . . o e e 544.
GtV OUNL . . . o 545.

GloSSary . . 546.
Appendix — Cross References of C++to C FunctionCalls. 550

Configuration FUNCLIONS e e e 550

Hardware Interface and Global Functions. 551

Device FUNCLIONSo e e 553

VIEWPOrt FUNCLIONS. e e e e e 558

Database FUNCLIONS. e e et 564

VIeWpOoint FUNCLIONS. e e e e e e 565

Blend Table FUNCLIONS. 567

Color Table FUNCLIONS 569

Model FUNCLIONS. 570

ANIMAtion FUNCHIONS e e e e 581

Culling Node FUNCLIONS.o e 584

LOD Culling Node FUNCLIONSt e e e 588

Articulated Part Culling Node Functions. i 589

Animation Culling Node FUNCLIONS 593

Developer’s Guide 26 Version 4.0e

CONTENTS — NEXT PAGE

Instance Culling Node FUNCLIONS. e 595
Instance Reference Culling Node Functions. 596
Point Light FUNCLIONS. e 597
InStance Set FUNCHIONS et e 598
Polygon FUNCLIONSo 600
VerteX FUNCHIONS. e e e 604
Texture FUNCHIONS. o e 607
Microtexture FUNCLIONS e e 609
MatrixX FUNCHIONS. . . . o e 610
INdEX L 614

Developer’s Guide 27 Version 4.0e

Introduction

| NTRODUCTION

Thank you for purchasing the Real 3D PRO-1000 Professional Series Image Generator and
welcome to the world of Real 3D Graphics. Our goal is to provide you with the highest quality
product, superior customer support, and a product that is easy to use.

ABOUT THIS GUIDE

The Real 3D PRO-1000 Professional Series Developer’s Guide documents the Applications
Programming Interface (API) for the Real 3D PRO-1000 series of image generators. This API
is a library of functions that provides a higher level of interface to the PRO-1000 rendering
engine. Figure 1 shows a typical graphics application in which the PRO/API library interfaces
with the PRO-1000 hardware to prepare and render graphical objects. Detailed descriptions
of the PRO/API graphics library functions, as well as general information about the data objects
used by the library, are contained in this guide. A general overview of the PRO-1000 hardware
capabilities is also provided.

PRO-1000
GEOMETRY &

PRO/API

Application —#» LIBRARY

RENDERING

. J

=[]]

’\l\—/l/\

Figure 1. Typical Graphics Application

Developer’s Guide 28 Version 4.0e

Introduction

The PRO/API library functions can be grouped according to their functionality. To locate a
specific function, refer to the Functional Group section.

To further assist the application developer, an Adobe PDF version of this document is available
from Real 3D. This full color electronic document provides thumbnails, bookmarks, and hot
links to various portions of this guide. Information contained in the PRO-1000 Professional
Series Developer’s Guide is arranged in the following sections: Each section of this manual
features a section overview highlighting key topics and concepts presented in that section. The
back portions of this manual contain a glossary and index. If you require assistance not
available in this guide, please refer to the Title Page for Real 3D contact information.

* Introduction — describes the objectives of the PRO-1000 API and explains the
use, function and structure of the Developer’s Guide

* Hardware Overview — provides a brief overview of system performance and
hardware features of the PRO-1000 Professional Series Image Generator

* Concepts and Object Data Types — describes API real-time concepts,
objectives and advantages of the PRO-1000 image generator

* Functional Groups — provides an overall description of the functions available
through the PRO-1000 API. These functions are sorted by group type and are
described in detail in the Function Reference section

* Sample Applications —sample programs are provided to illustrate concepts and
features of PRO-1000 API. These programs are provided to augment the detailed
descriptions of specific functions described in the Function Reference section

* Function Reference — describes in detail each function available through the
PRO-1000 API library

* Glossary — provides easy access to definitions of unfamiliar terms or acronyms
* Index — a fast cross-reference to specific subjects by page location

Developer’s Guide 29 Version 4.0e

Introduction

ABOUT THIS SOFTWARE

The PRO/API library functions provide the mechanism to create the display list supported by
the PRO-1000 hardware, manipulate the display list for specific application needs, and load
the graphical objects into the hardware memory for rendering. The graphical object types are
described in more detail in the Functional Group Section.

The PRO/API library runs on personal computers that are based on Intel architecture, running
Microsoft Windows NT. The PRO/API also runs on Sun SPARCStations running Solaris 2.X.
This manual primarily presents PRO/API functions callable from C++ application programs;
C-callable functions are also documented.

Developer’s Guide 30 Version 4.0e

Hardware Overview

HARDWARE OVERVIEW

The REAL 3D PRO-1000 visual system is a true low-cost, high-performance image generator
for serious simulation applications. Allimage related computations are performed in the image
generator. The REAL 3D PRO-1000 is controlled by a user-supplied personal computer or
workstation which acts as host for control programs. The Image Generator system off-loads
intensive floating point computations and all “out-the-window” image management tasks from
the host computer to achieve a sustained image update rate of 30 or 60 frames per second.
The basic PRO-1000 pixel fill rate is 50 megapixels per second, and may be expanded to 100
megapixels per second by simply adding a second pixel fill daughter board to the system. A
high-resolution model with four pixel boards offers a 200 megapixel per second fill rate. This
is especially important for high resolution and 60 Hz update requirements. Additionally, 8 MB
of on-board MIP-mapped texture random access memory is available. REAL 3D’s patented
MIP-mapped, tri-linear interpolation and microtexture algorithms are used to process visual
scenes of unmatched quality. Anti-aliasing is performed as a post process using a Patent
Pending proprietary image processing algorithm.

SYSTEM ARCHITECTURE

A system configuration diagram of the PRO-1000 series image generator is depicted in
Figure 2. As illustrated, multiple PRO-1000 systems may be “chained” together to provide
superior application flexibility and system expandability. A differential fast-wide SCSI 1l bus
provides the interface from the user provided host computer to the PRO-1000 system(s). The
host computer may be a PC or a workstation.

Developer’s Guide 31 Version 4.0e

Hardware Overview

(OPTIONAL EXTERNAL GENLOCK)

FAST-WIDE
SCSI I BUS

DIFFERENTIAL

HOST
COMPUTER

A

DISPLAY
SYNC

ADD AS MANY PRO-1000 IG’'S

PRO-1000

PRO-1000

AS SCSI Il CAN SUPPORT

Figure 2. PRO-1000 Series Image Generator System Diagram

TO DISPLAY

OPTIONAL
SECOND VIDEO
CHANNEL

TO DISPLAY

OPTIONAL
SECOND VIDEO
CHANNEL

Developer’s Guide

32

Version 4.0e

Hardware Overview

SYSTEM CONFIGURATIONS

The REAL 3D PRO-1000 Professional Series image generator supports multiple
configurations. The standard PRO-1000 configurations are listed by model number in
Table 1. Please contact REAL 3D for specific system configuration information.

Table 1. PRO-1000 Series System Configurations

MODEL NUMBER PIXEL PROCESSORS PIXEL WRITES
1100 1 50M
1200 2 100M
1400 4 200M

Developer’s Guide 33 Version 4.0e

Hardware Overview

DISPLAY INTERFACE

The PRO-1000 display resolution is programmable. The standard set of resolutions
supplied with the PRO-1000 system are listed in Table 2 and Table 3. This set may be

customized.
Table 2. PRO-1000 Standard Resolutions (Single Channel)

DISPLAY

RESOLUTION INTERLACE UPDATE RATE MODEL NUMBER
640H X 480V non-interlace 60 Hz. 1100/1200/1400
1024H X 768V non-interlace 60 Hz. 1400

512H X 486V interlace 59.94 Hz.* 1100/1200
720H X 486V interlace 59.94 Hz.* 1400

720H X 576V interlace 50 Hz. 1400

* — Application programmers should treat this as 60 Hz.

The following table shows the standard configurations supported in dual monitor mode.
In the dual monitor mode, both monitors must have the same resolution.

Table 3. PRO-1000 Standard Resolutions (Dual Channel)

RESOLUTION INTERLACE DISPLAY MODEL NUMBER
UPDATE RATE

640H X 480V non—interlace 60 Hz. 1400

512H X 486V interlace 59.94 Hz.* 1200

640H X 486V interlace 59.94 Hz.* 1400

* — Application programmers should treat this as 60 Hz.

Developer’s Guide 34 Version 4.0e

Hardware Overview

HARDWARE CAPACITY

COORDINATE SETS

Any model or viewpoint that will be positioned or rotated must have an associated direction
cosine matrix. Storage is provided for up to 4096 direction cosine matrices, which allows
up to 4096 coordinates sets to be processed.

POLYGONS

Eight megabytes of polygon memory is provided. With 8 MB of memory, a typical database
can include over 100,000 polygons of active database storage. Additional database
memory can be added in 8 MB increments by adding memory daughter boards, up to a total
of 32 MB of polygon memory capable of storing over 400,000 polygons.

TEXTURE

There are 4 million texture memory locations. An option exists to increase texture storage
to 16 million texture memory locations. Each texture memory location is a 16-bit word.
Texture map size may range from 32 by 32 to 1024 by 1024 texels in increments of powers
of 2. Texture maps may be square (e.g., 64 x 64) or rectangular (e.g., 256 x 512).
Microtexture and texture MIP levels are included in the texel count.

Developer’s Guide 35 Version 4.0e

Concepts and Object Data Types

CoNCEPTS AND OBJECT DATA TYPES

APl CONCEPTS AND CONVENTIONS

BLENDING AND LEVELS-OF-DETAIL

Most realtime computer graphics systems require the use of polygon and processing load
management controls in order to maintain a steady rendering update rate. The number of
polygons processed by the rendering engine and the pixel fill rates are typically the two
most significant measurements affecting a realtime system’s ability to maintain the desired
graphics update rate (overload).

One of the features available in the PRO-1000 series system which allows users to manage
the realtime rendering process more efficiently is the use of levels of detail (LODs). LODs
provide a simple mechanism for the user to define how elements that make up the scene
being rendered may be replaced by simpler versions of themselves as they get further
away. The PRO-1000 series achieves a smooth transition between the different LODs by
using a complementary translucency algorithm which gradually replaces one LOD by
another as a function of distance. This avoids distracting anomalies due to the abrupt
switch of model/object versions that is typical of lower performance systems.

LOD blending is also used to smoothly eliminate graphic objects that are too small to
provide any meaningful contribution to the scene being rendered. This is done by using
translucency to fade the object out of the rendered scene as a function of distance from the
eyepoint, and then completely discarding the object from the display list at run-time. This
saves realtime resources and helps to maintain a high graphics update rate. Up to four
LODs are supported by the PRO-1000 system.

LOD blending and discard are influenced by the user through the use of blending or feature
types. The PRO-1000 supports 127 application controllable blend types per viewport.
Each element of the display list (or database) hierarchy may be assigned a blend type. The
different pieces of the graphics scene may then be controlled independently, based on the

Developer’s Guide 36 Version 4.0e

Concepts and Object Data Types

blend types assigned by the application. These LOD control parameters define the
subtended angle or range the LOD transitions are to occur. Each of the 127 available LOD
control entries per viewport contains four sets of maximum and minimum angles or ranges
over which a given LOD exists, as well as a transition range or angle over which the LOD
complementary translucency transition or feature discard takes place.

LIGHTING AND WEATHER EFFECTS

The PRO-1000 series systems provide a number of different ways in which polygons may
be affected by the system lighting parameters. There are several types of polygon lighting
available to the application programmer:

1. Self luminous lighting

2. Fixed polygon shading
3. Flat sun lighting

4. Smooth polygon shading

The self-illuminating model option disables all sun lighting effects on a polygon. Polygons
using this kind of illumination model are always rendered using their full color, which never
gets modulated based on the sun lighting parameters.

The fixed shading polygon illumination model is similar in nature to the self-illumination
model in that polygon colors are not affected by the sun lighting parameters. However, the
user may specify a fixed shading weight per vertex which will be used to interpolate a
shading value for every pixel covered by the polygon on the screen.

The flat sun lighting model calculates a single color intensity modulation value for a
polygon, based on the alignment of the polygon with the sun direction, the sun intensity,
and the amount of ambient light (minimum color modulation).

The smooth shading lighting model uses vertex normals and the sun direction, intensity,
and ambient light parameters to calculate a per vertex lighting value that gets interpolated
and applied on a per-pixel basis.

The PRO-1000 series systems provide a realistic polygon fogging algorithm that can be
used to control the amount of fading applied to the rendered scene on a per pixel basis.
The application may define a set of fog behavior parameters as well as the color of the fog.

Developer’s Guide 37 Version 4.0e

Concepts and Object Data Types

The fog parameters available to the user are the distance at which a pixel is to be fully
fogged, and either the amount of fog (normalized between 0.0 and 1.0) at the eyepoint OR
the distance at which fog starts to have an effect.

COORDINATE SYSTEMS

All coordinate systems in the PRO-1000 system follow the same conventions. This is an
important point for application developers. The emphasis here is on the word
CONVENTION. There is no coordinate set that is inherently required by the system;
however, a set of CONVENTIONS is used in the PRO-1000 Application Programming
Interface (PRO/API) software to manipulate the display list. The general coordinate set
conventions used by the PRO/API is a Z—up right-handed coordinate system with rotation
performed in a X,Y, and Z order.

ORDER OF ROTATION ANGLES

All PRO/API object and viewpoint angles are expressed as rotation angles about the
X, Yy, and z axes. All rotations are counterclockwise positive about the axis of rotation.
To transform an object, the object is first rotated about the x axis (roll), then about the
y axis (pitch), then about the z axis (yaw). Note that yaw is not heading as normally
assumed in many simulation applications; rather, heading = (90.0° — yaw).

Since not all applications use the same coordinate set definitions and conventions, the
PRO/API software provides a generalized way of specifying rotation matrices so that
the application may use its own coordinate set definitions and conventions.

WORLD

The world coordinate system is in reality nonexistent in the system; however, it must
be noted that all the geometry of high-level graphics constructs (pre-processed or
immediate mode) is defined as being relative to a common reference point (0.0, 0.0,
0.0). The one exception is graphic objects that are associated with a separate
coordinate set, in which case their geometry is assumed to be relative to the parent
coordinate set. All user controllable coordinate set definitions have a parent, and at
the highest levels of the display list hierarchy, the world coordinate system is the
parent.

Developer’s Guide 38 Version 4.0e

Concepts and Object Data Types

LOCAL

Local coordinate systems are used to manipulate display list elements that require up
to six degrees of freedom. The position of the local coordinate set is relative to its
parent (the world in most cases) and so are its rotations, as depicted in Figure 3.
Fifteen levels of coordinate set nesting (levels of articulation) are supported and the
different levels of nesting are defined as parent relative. The DCSpos vector
represents the position of the local coordinate set relative to the world/parent

coordinate set.

[

MOVING MODEL
COORDINATE
SYSTEM

roll yaw

z (up) Y ()

// .
- pitch
- //
DCSpoE//
y -
~
//
Roll, Pitch, Yaw= 0.0, 0.0, 0.0
origin X 0.0.90.0, 0.0
0.0, 0.0,90.0
WORLD/PARENT 90.0, 0.0, 0.0
COORDINATE
SYSTEM

Figure 3. Local Coordinate System

» x (forward)

w Nose Along X Axis
w Nose Along —Z Axis
w» Nose Along Y Axis
w Right Axis Along —Z

Developer’s Guide 39

Version 4.0e

Concepts and Object Data Types

VIEWPOINT

The viewpoint coordinate system (eyepoint or viewpoint), as depicted in Figure 4,
behaves in the same way as any other coordinate system, with the exception that its
position and orientation must always be relative to the world coordinate system. The
Rp vector represents the location of the viewpoint coordinate system relative to the

world origin.

roll

viewpoint
pitch
7~
Rp_~
7~
origin _
Roll, Pitch, Yaw = , ,
.0, .9
ENVIRONMENT 90.0, ,
COORDINATE
SYSTEM

Figure 4. Viewpoint Coordinate System

CHANNEL
COORDINATE
yaw SYSTEM

» boresight/forward

0.0, 0.0, 0.0 = Nose Along X Axis
0.0,90.0, 0.0 = Nose Along —Z Axis
0.0, 0.0,90.0 = Nose Along Y Axis
0.0, 0.0, 0.0 = Right Axis Along —Z

Developer’s Guide 40

Version 4.0e

Concepts and Object Data Types

OFFLINE FORMATTING MODE

Offline formatting mode allows the use of the PRO/API internal display list structures to
process a model and save the formatted data to file. In offline formatting mode, the display
listis not actually sent to the renderer. This means that a complex model can be formatted
on a system with no PRO-1000 system attached and saved models can be loaded multiple
times without incurring the overhead of run—time formatting.

When developing a formatter application using offline mode, PRO/API objects relating to
rendering, such as devices, blend tables, viewports, and databases, need not be created.

DYNAMIC PAGING

Dynamic paging allows applications to load pre—formatted models (processed offline and
saved to file) at run time while making sure that real-time performance on the host is not
compromised. This dynamic paging is especially useful for applications whose database
storage requirements (both texture and geometry) exceed the existing system capacity
and do not require all the data to be loaded at the same time. Applications such as flight
simulation and extended driving training are able to move smoothly about large area
databases which can not be all held in memory.

Dynamic paging, or dynamic database update, is supported for both texture and geometry
and its memory management controls are invisible to the user. The functionality provided
by the PRO/API in support of this feature has been designed to hide from the application
all the file I/0O and CPU intensive functions normally associated with loading a model. This
is accomplished by time—slicing the complete database load procedure in such a way that
it adjusts to the instantaneous demands placed on the CPU by the host application and only
uses the spare time left over after processing a real-time field time to perform its function.

The net result and visual impact of dynamic update is that the application can, at any time
during its execution, request a new model load, and at some time later the model is made
available to the host application through the setting of application pointers and the
invokation of user callback when the model load has been completed.

Dynamic paging also supports a model load request queueing mechanism that allows the
host applications to request as many model loads as desired, indpendent of any other
model load request it may have previously issued.

Developer’s Guide 41 Version 4.0e

Concepts and Object Data Types

In order to maintain system performance, the application needs to ensure that the model
load requests do not exceed the system storage capacity. In a typical application, once a
visible portion of a given large area database has been loaded, the new model load
requests are normally balanced by model deletions, thus allowing the hardware memory
management mechanisms built into the API to reclaim and reuse any system and host
memory previously used by unloaded (deleted) models.

As part of the dynamic database paging process, texture maps may be reduced in
resolution if the texture memory demands are such that they exceed the total system
texture memory capacity. There is no performance impact when this occurs, but image
resolution will be reduced if the requested space is not readily available at the time of the
model load request.

Developer’s Guide 42 Version 4.0e

Concepts and Object Data Types

VIDEO OUTPUT CONTROLS
GAMMA CORRECTION

Gamma correction provides a means of color balancing physically different display
devices (multiple monitors, projectors, etc.). This feature is especially useful when
dealing with display devices with different color output profiles that are required to
match as closely as possible to provide a more visually convincing composite image.

The interface provided by the PRO/API allows the host application to adjust the
intensity profile of each video output color component (red, green or blue)
independently through either a standard single gamma correction value or though the
use of color look—up tables. The color look—up tables are 8—bit value tables containing
256 entries, each representing a level of video input and output (8—bits in, 8—bits out
), with zero representing the darkest color intensity input into and output from the
table, and 255 being the maximum allowable value.

SOFT EDGE BLENDING

Soft edge blending is supported only on high—resolution (1400 series) systems. This
is an advanced display device image matching feature intended to be used in
conjunction with display projectors so that images that are output by phisically
separate devices may be seamlessly combined over a single large—display surface.

This feature can be used to account for the non—uniform image intensity profiles
usually observed when using display projectors (the center of the display is brighter
than the borders due to the lighting profile of the beam produced to project the image
in the final surface).

The interface provided by the PRO/API allows applications to define a matrix of color
intensity attenuation values across the complete display outout (up to two video
outputs on a 1400) on a per color component basis (red, green and blue). This
attenuation factor matrix is defined at a resolution that is lower than that of the physical
display by a factor ot eight (8), effectively allowing for the specification of a single
triplet of attenuation values (red, grren and blue) for every 8 pixels on the screen
across the vertical and horizontal directions.

The intermediate pixel attenuation values are calculated by the hardware through the
use of bilear interpolation between the four nearest user defined grid points in screen
space.

Developer’s Guide 43 Version 4.0e

Concepts and Object Data Types

API DATA TYPES

DEVICE

A device corresponds to a physical PRO-1000 system. The device type allows attributes
such as overload mode, display select/line rate, foreground and background color to be
specified individually for each unit. This is especially important if the attached PRO-1000
units are of different types (e.g., a 1200 and a 1400). Devices are identified by a logical
unit number, which corresponds to the order in which the systems are physically chained
on the SCSI bus.

The PRO/API supports the concept of a default device. Initially, this device acts as a data
broadcast mechanism to all active attached units. This allows default attributes to be set
which apply to all devices. However, once an application creates a device object
corresponding to a particular unit, it is assumed that the new device is distinct from all
others, and therefore default attribute changes are no longer applied to that device. This
implies an order dependency that application programmers should recognize. For
example, code snippet one, listed below, results in all devices (including the new device)
having a red background; code snippet two results in device O having the default black
background and all other devices having a red background.
1. PRO_Init() ;
PRO_SetBackgroundColor(255, 0,0) ;
devO = new PRO_Device(0);

2. PRO_Init() ;
devO = new PRO_Device(0) ;
PRO_SetBackgroundColor(255, 0,0) ;

Since the default device is a concept rather than a physical device, it has no intrinsic status
information associated with it. Requests for hardware feedback (e.g., frame rate, model
number) from the default device returns data from the first active logical unit.

Developer’s Guide 44 Version 4.0e

Concepts and Object Data Types

VIEWPORT

A viewport defines a rectangular area of the screen in which the 3D scene will be rendered.
As many viewports as desired can be processed; however, the number of viewports may
be limited by the processing resources of the system. Viewports may overlap and may be
contained within another viewport. The hierarchy of the viewports defines their priority, and
thus the order in which viewports are processed. A viewport has a lower priority than its
children, but the same priority as its siblings. If the priority levels of multiple viewports are
the same and the viewports overlap, the polygons will merge and become one combined
scene in the overlapping areas.

A viewport defines its size and position on the display, and its field-of-view. It also defines
sun illumination parameters, sun position, fog attributes, and headlight (lobe) position and
size. A viewport must be attached to a device in order to output the viewport's data to that
device only. At creation, all viewports are set to broadcast to all active logical units, that
is, they are initially attached to the default device.

VIEWPOINT

A viewpoint allows control over the viewing position and orientation of a viewport. Multiple
viewports may be controlled by a single viewpoint. Viewpoints can also be attached to other
viewpoints, making viewpoint relative dynamics easy to implement.

DATABASE

A database defines a group of models that comprise a scene. For a database to be
rendered, it must have attached models and must itself be attached to a viewport. Multiple
viewports may be attached to the same database (scene).

Developer’s Guide 45 Version 4.0e

Concepts and Object Data Types

MODELS

The PRO/API supports two types of model/geometry data: pre-formatted models that are
loaded from a file on disk, and run-time generated models. A model may have sub-parts
that can be positioned and oriented relative to their topological parent. A model or its
articulated parts may have multiple representations (or animation frames) and levels of
detail. Model instancing is supported, allowing the same geometry to be referenced more
than once in the database hierarchy without replicating polygon data. If the polygons
associated with a model or culling node are created so that they reference a color table,
each model or culling node instance may reference a separate color table.

PRE-FORMATTED

Pre-formatted models are models whose geometry and attribute data were processed
“offline” and stored in a disk file. When a model is created through the PRO/API, the
name of the model is provided and the file(s) are read into the display list structures
for processing.

RUN-TIME

Run—time models are models whose geometry and attribute data are determined by
an application. At run-time, the application creates culling nodes and polygons, sets
their attributes, and links them together to create the desired model hierarchy.

INSTANCING

Instancing allows the applications to share display list segments to reference the same
model geometry from different places in the database. Individual instances can be
positioned differently, but share the same polygons.

Developer’s Guide 46 Version 4.0e

Concepts and Object Data Types

ANIMATION SEQUENCES

Animation sequences are created by modeling multiple versions of the same model
(animation frames) and cycling through them at run-time. Animation sequences may
be used to depict effects such as explosions, fire, or flashing lights. Animation
sequences are supported for polygon data and texture animation, as well as model
swapping.

The PRO API supports a variety of mechanisms for displaying animation sequences.
An application may specify that an animation cycle runs through its frames in a forward
sequence or in a reverse sequence, or that it runs forward and then back again to its
initial frame. The user determines whether the animation sequence should be under
full user control or whether it should run automatically after activation. “Automatic”
animations may be run for a set number of iterations, for a set period of time, or run
continuously until deactivated. These animations must be activated through an
explicit function call. A user-controlled animation is manipulated directly and only by
the application, giving the ability to activate or deactivate any combination of animation
frames during any real-time cycle. No separate function call is required to start or stop
a user—controlled animation. The application also controls whether an animation is
visible before it is activated and whether it remains visible after it is deactivated.

CULLING NODES

Culling nodes are used to determine if a model is in the field-of-view and to select the
level-of-detail to be rendered.

Culling nodes are connected by child and sibling linkages to create a directed
tree-structured database hierarchy. A culling node can have either culling nodes or
polygons as its children and can only be attached to a single parent, with the noted
exception of instance nodes. The culling node bounding volume encompasses all of its
children for real-time culling purposes. A culling node that points directly to polygons is
called a “leaf node”. There is a limit of 15 levels of child nodes (nesting), not including the
polygon nodes. Once the culling hierarchy is built, it must be attached to a model class
instance before it can rendered.

A culling node may reference a color table that becomes the default for all of the node’s
children. Each subsequent generation in the culling hierarchy may reference a different
color table. This allows a different color tables to be used for each instance of a model.

Developer’s Guide 47 Version 4.0e

Concepts and Object Data Types

There are several sub—types of culling nodes, described in the following paragraphs.

LOD CULLING NODES

LOD culling nodes are used to build a culling hierarchy for an object with different
representations at different levels of detail. Each child (culling node or polygon) added
to an LOD culling node specifies the level of detail at which the child is valid. Up to
four LODs are supported by the PRO-1000 system. The LOD transition between the
different representations of the model is controlled by the feature type of the culling
node and the blend table used by the viewport in which the geometry is being
displayed.

ARTICULATED PART CULLING NODES

An Articulated Part culling node, or six degree—of—freedom node, is used to define
geometry that can move relative to the parent coordinate set to which it is attached.
Fifteen levels of coordinate set nesting (levels of articulation) are supported.

ANIMATION CULLING NODES

Animation culling nodes are used to build a culling hierarchy for an object with different
representations, or animation frames. which can be turned on and off by the
application. Each child (culling node or polygon) added to an Animation culling node
specifies the frame for which the child is valid.

INSTANCE CULLING NODES

Instance culling nodes define the top of a shared display list segment that can be
referenced from other parts of the scene display list.

INSTANCE REFERENCE CULLING NODES

Instance Reference culling nodes are used to place shared geometry. When an
Instance Reference culling node is created, is must be passed the Instance culling
node to which it refers. An Instance Reference node is considered a leaf node; its
“child” is the shared geometry segment. An Instance Reference may be attached to
a parent node and may not have any other children, but may have siblings.

Developer’s Guide 48 Version 4.0e

Concepts and Object Data Types

If the shared geometry represents the entire object (e.g., a tree), the Instance
Reference is attached directly to the model, and the model is used to position and
rotate the reference. If the shared geometry represents a portion of the entire object
and that portion requires individual movement (e.g., a foot on a human), the Instance
Reference is attached to an Articulated Part node which is used to position and rotate
the reference. In the latter example, of course, the entire human can be positioned
or rotated at the model level.

POINT LIGHTS

A Point Light is used to create an instance of a point luminous feature. The size,
feature type, and number of sides of the point light model may be customized.

INSTANCE SETS

An Instance Set is a culling node which defines a set of point features. Each feature
is positioned individually. This type of culling node can be used to simulate particles.

Developer’s Guide 49 Version 4.0e

Concepts and Object Data Types

POLYGONS

A polygon is a fully rendered, textured, shaded, anti-aliased, fogged, illuminated,
translucent geometric object. The polygon node contains the data necessary to define a
textured and shaded polygon. This data includes its vertex list, translucency, texture,
shading, and color.

LAYERED POLYGONS

A layered polygon is a polygon that lies in the plane of another polygon. The visual
priority of layered polygons is based on the hierarchy of the polygons. A layered
polygon has a lower priority than its children, and the same priority as its siblings.

TRANSLUCENCY

Polygon translucency is specified at the polygon node level. Also, a culling node may
compute translucency for level-of-detail transitions. In this case, the translucency is
inherited for all child nodes. The final polygon translucency is the product of the
inherited translucency from the culling nodes, the inherent polygon translucency, and
the translucency due to texture.

HIGH PRIORITY POLYGONS

A high priority polygon can be specified and will have visual priority over all other
polygons in the viewport.

SHADING AND LIGHTING

There are several modes of shading. A shading intensity is computed at each vertex
that has a vertex normal defined. If a vertex normal is not provided, a vertex may
define its own fixed shading value, or have it computed by using the polygon normal
as the vertex normal (flat shading). The shading intensities at each vertex are
interpolated across the polygon to compute a shading value at each pixel that lies on
the polygon. Sun shading uses the sun direction, sun intensity, ambient light, and
vertex normals to compute shading. The vertex normals are user defined vectors
representing the gradient of the surface whose curvature will be used to create a
seamless, smoothly shaded object.

Developer’s Guide 50 Version 4.0e

Concepts and Object Data Types

TEXTURE

Each polygon may be textured with color or monochrome texture. The texture map
may modulate the color, intensity, and/or translucency of a polygon. An x and y
normalized texture address at each vertex of the polygon maps a texture pattern on
the polygon. Texture maps may be defined by the user to have any size, but will be
clamped to a maximum size of 1024 x 1024.

COLOR
A polygon may reference a color table, or it may store the actual RGB color value.

LEVEL-OF-DETAIL (LOD) TABLE

The LOD table regulates the level-of-detail of a model displayed in the viewport to which
the table is attached. The LOD table may be used to load manage the viewport. The LOD
table can have up to 127 entries for different feature types. Each culling node may be
assigned to one of the 127 feature types via an LOD index (1 to 127). The LOD controls
are based upon either the subtended angle of the model from the viewpoint or the range
from the viewpoint. As a model moves away from the viewpoint, its subtended angle
becomes smaller, so fewer polygons are needed to represent the model. Therefore, a
lower LOD version of the model can be selected, leaving more polygons available for more
important features. Complementary translucency blending is provided for model
level-of-detail transitions.

COLOR TABLE

A color table can store up to 4096 colors, each of which is a 24-bit RGB value. A color table
may be referenced by a culling node. A color table is not required if all polygons store actual
RGB values instead of an offset into a color table.

Developer’s Guide 51 Version 4.0e

Functional Groups

FuncTioNAL GROUPS

Configuration Functions

The Configuration functions provide control over the PRO-1000 hardware
configuration. They allow customization of the hardware memory allocation and
allow deactivation of attached PRO-1000 units.

Function Name Description

PRO_ConfigureMemory

Sets the memory configuration.

PRO_AbbreviatedConfigure-
Memory

Sets the memory configuration.

PRO_SetLogicalUnitOn

Allows display list data to be processed on this device.

PRO_SetLogicalUnitOff

Inhibits display list data from being processed on this device.

Hardware Interface and Global Functions

The Hardware Interface and Global functions are not associated with any
specific display list objects. These functions are used to communicate with the
PRO-1000 hardware, to get status back from the hardware, and to configure
global attributes ranging from point light features (size and feature type) to
texture memory page size to background color.

Function Name Description

PRO_Init Initializes communication with the PRO-1000 hardware.
PRO_InitOffline Initializes display list when running in offline mode.
PRO_Stop Shuts down communication with the PRO-1000 hardware.

PRO_DisplayDatabase

Processes the display list.

PRO_LoadModelDynamically

Loads a preformatted model dynamically.

PRO_UnloadDynamicModel

Unloads a dynamically loaded model.

PRO_SetGenlock

Sets the GENLOCK between multiple PRO-1000 devices.

Developer’s Guide

52 Version 4.0e

Functional Groups

Hardware Interface and Global Functions — Continued

Function Name Description

PRO_SetUpdateRate

Sets the realtime update rate.

PRO_SetOverloadMode

Obsolete. Use equivalent Device Function.

PRO_SetDisplaySelect

Obsolete. Use equivalent Device Function.

PRO_SetForegroundColor

Obsolete. Use equivalent Device Function.

PRO_SetBackgroundColor

Obsolete. Use equivalent Device Function.

PRO_SetGamma

Obsolete. Use equivalent Device Function.

PRO_SetPointLightDetail

Sets the number of edges of the lights.

PRO_SetPointLightFeatureType

Sets the point light size clamp feature type.

PRO_SetPointLightSize

Sets the physical culling size of the lights.

PRO_SetPointLightPolygon

Sets the polygon to be used as point light model.

PRO_SetMicrotextureMapCount

Sets the number of microtexture maps.

PRO_SetTexturePageSize

Obsolete.

PRO_ReloadLogo

Reloads the spinning Real3D logo.

PRO_GetNumberOfLogicalUnits

Returns the number of attached PRO-1000 units.

PRO_GetNumberOfAvailableTexels

Returns the amount of texture memory.

PRO_GetMicrotextureMapCount

Returns the number of microtexture maps.

PRO_GetFirmwareRevision

Obsolete. Use equivalent Device Function.

PRO_GetModelNumber

Obsolete. Use equivalent Device Function.

PRO_GetRealtimeClockCount

Obsolete. Use equivalent Device Function.

PRO_GetProcessingTime

Obsolete. Use equivalent Device Function.

PRO_GetFrameRateEstimate

Obsolete. Use equivalent Device Function.

PRO_GetPolygonMemorySize

Gets the size of Polygon memory in bytes.

PRO_GetDefaultDevice

Gets a pointer to the PRO_Device object representing
the default device (logical unit —1).

Developer’s Guide

53 Version 4.0e

Functional Groups

Device Functions

The Device class functions are used to assign graphical objects to a specified

PRO-1000 device.

Function Name Description

PRO_Device constructor

Creates an instance of a PRO_Device.

PRO_Device destructor

Destroys an instance of a PRO_Device.

GetStatus

Gets the status of a PRO_Device object instantiation.

AttachViewport Attaches a viewport to a PRO_Device.

DetachViewport Detaches a viewport from a PRO_Device.

SetGamma Sets the gamma correction for the device based on a fac-
tor.

SetGammaRGB Sets the gamma correction for the device using tables of
component color values.

ActivateGamma Turns on hardware gamma table processing.

DeactivateGamma Turns off hardware gamma table processing.

SaveGammaToROM Saves table in gamma memory to ROM.

WriteBlendMemory Writes data to blend memory.

ActivateBlendMemory

Turns on soft edge blending.

DeactivateBlendMemory

Turns off soft edge blending.

SaveBlendMemoryToROM

Saves table in blend memory to ROM.

SetForegroundColor

Sets the foreground color for the device using 8—bit color
values.

SetForegroundColor

Sets the foreground color for the device using normalized
color values.

SetBackgroundColor

Sets the background color for the device using 8—bit color
values.

SetBackgroundColor

Sets the background color for the device using normalized
color values.

Developer’s Guide

54 Version 4.0e

Functional Groups

Device Functions — Continued

Function Name Description

SetDisplaySelect Sets the display sync select based on number of displays and
desired line rate.

SetOverloadMode Sets the realtime processing overload behavior.

GetLogicalUnit Gets the logical unit associated with the PRO_Device.

IsValidDisplaySelect

Determines whether specified combination of display type and
line rate is supported for the PRO_Device

GetSyncSelectinfo

Returns display type and line rate corresponding to each hard-
ware sync file.

HasAttachedViewports

Reports whether device has attached viewports.

GetGamma

Returns the gamma value of the device.

GetForegroundColor

Gets the foreground color of the device.

GetBackgroundColor Gets the background color of the device.
GetDisplaySelect Returns the device’s display mode.
GetOverloadMode Returns the current overload mode.
GetLineRate Returns the line rate set for the device.
IsHighRes Tests for a high resolution system.
HasExpandedTexture Tests for expanded texture memory.

GetFirmwareRevision

Returns the firmware version of the PRO device.

GetModelNumber

Returns the model number of the PRO device.

GetRealtimeClockCount

Returns the device’s image display processing time.

GetProcessingTime

Returns the device’s image display processing time in seconds.

GetFrameRateEstimate

Returns the device’s estimated frame rate.

GetCurrentFrameCount Returns the device’s image display processing time in HW
clocks.
GetHWPolygonMemorySize Returns the device’s polygon memory size.

Developer’s Guide

55 Version 4.0e

Functional Groups

Viewport Functions

The Viewport class functions are used to configure and control a viewport, a
rectangular area on the 2D display for viewing the 3D data.

Function Name Description

PRO_Viewport constructor Creates an instance of a PRO_Viewport object.

PRO_Viewport destructor Destroys an instance of a PRO_Viewport object.

GetStatus Gets the status of a PRO_Viewport object instantiation.
AttachDefaultBlendTable Associates the default blend table with a viewport.
AttachDefaultDatabase Associates the default database with a viewport.
AttachBlendTable Associates a blend table with a viewport.
AttachDatabase Associates a database with a viewport.

AttachViewpoint

Associates a viewpoint with a viewport.

DetachViewpoint

Detaches a viewpoint.

AttachChildViewport

Attaches a viewport to a higher priority viewport.

DetachChildViewport

Detaches a viewport from its parent viewport.

SetFieldOfView Defines the field—of—view.
SetFieldOfView Defines an asymmetric field—of—view.
SetDisplayExtents Sets the extents of the viewport in the physical display.

SetSunllluminationData

Sets the parameters which control sun illumination effects.

SetSunVector Sets the position of the sun.
SetFogParameters Sets the parameters that control fog effects.
SetFogRanges Sets the near and far ranges for fog effects.
SetFogColor Sets the color of the fog.

SetLightFogColor Sets the color of the light lobe on fog.
SetLightSourceColor Sets the color of the light lobe on polygons.

Developer’s Guide

56 Version 4.0e

Functional Groups

Viewport Functions — Continued

Function Name Description

Sets the parameters that control light source illumination effects.

SetLightSourceParameters

SetLightSourceStartRange

Sets the range to the light source.

SetlLightSourceExtent Sets distance which the light source illuminates.
SetLobeParameters Sets the parameters that define the light lobe.
SetViewportOff Deactivates a viewport.

SetViewportOn Activates a viewport.

SetDisplaySelect Selects the display.

SetlnvertFlags

Sets the mirror flags as specified.

GetViewpoint

Gets the associated viewpoint.

GetAttachedDevice Gets the associated device.

GetFieldOfView Gets the symmetric field of view angles.
GetFieldOfView Gets the asymmetric field of view half-angles.
GetDisplayExtents Gets the extents of the viewport in the physical display.

GetSunllluminationData

Gets the parameters which control sun illumination effects.

GetSunVector Gets the position of the sun.

GetFogParameters Gets the parameters that control fog effects.
GetFogRanges Gets the near and far ranges used for fog effects,
GetFogColor Gets the color of the fog.

GetLightFogColor Gets the color of the light lobe on fog.

GetLightSourceColor

Gets the color of the light lobe on polygons.

GetLightSourceParameters

Gets the parameters that control light source illumination effects

GetLobeParameters

Gets the parameters that define the light lobe.

GetPriority

Returns the viewport's priority level.

Developer’s Guide

57 Version 4.0e

Functional Groups

Database Functions

The Database class functions are used to manage graphical objects. A
Database is a collection of model root nodes that can be culled and (potentially)

rendered.
PRO_Database constructor Creates an instance of a PRO_Database object.
PRO_Database destructor Destroys an instance of a PRO_Database object.
GetStatus Gets the status of a PRO_Database object instantiation.
AttachModel Attaches a model to a PRO_Database.
DetachModel Detaches a model from a PRO_Database.
ActivateAllModels Activates all models attached to the scene.
DeactivateAllModels Deactivates all models attached to the scene.
HasActiveModels Indicates whether any attached models are active.

Developer’s Guide 58 Version 4.0e

Functional Groups

Viewpoint Functions

The Viewpoint class functions handle the positioning and orientation of a
viewpoint attached to a Viewport object.

Function Name Description

PRO_Viewpoint constructor Creates an instance of a PRO_Viewpoint object.
PRO_Viewpoint destructor Destroys an instance of a PRO_Viewpoint object.
GetStatus Gets the status of a PRO_Viewpoint object instantiation.
SetPosition Sets the position of the viewpoint.

Uses double—precision values.
SetPosition Sets the position of the viewpoint.

Uses single—precision values.
SetOrientation Sets the orientation of the viewpoint.

Uses double—precision values.
SetOrientation Sets the orientation of the viewpoint.

Uses single—precision values.
SetOrientation Sets the orientation of the viewpoint.

Uses a matrix of single—precision values.
GetPosition Gets the current position of a viewpoint.
GetPosition Gets the current position of a viewpoint.

Returns values via reference variables.
GetOrientation Gets the current orientation of a viewpoint.
GetOrientation Gets the current orientation of a viewpoint.

Returns values via reference variables.
GetLocalForward Gets the forward vector in viewpoint coordinates.
GetLocallLeft Gets the left vector in viewpoint coordinates.
GetLocalUp Gets the up vector in viewpoint coordinates.
AttachViewpoint Attaches a viewpoint to a viewpoint.
DetachViewpointFromParent Detaches a viewpoint from its parent.

Developer’s Guide 59 Version 4.0e

Functional Groups

Blend Table Functions

A Blend Table, or LOD Table, contains parameters that specify how groups of
objects are blended in and out of the rendered scene at various LODSs.

Function Name Description

PRO_LOD_Table constructor Creates an instance of a PRO_LOD_Table.
PRO_LOD_Table destructor Destroys an instance of a PRO_LOD_Table.

GetStatus Gets the status of a PRO_LOD_Table object instantiation.
SetRangeBlendParameters Sets blend parameters based on range.
SetSizeBlendParameters Sets blend parameters based on subtended angle.
GetRangeBlendParameters Gets blend parameters based on range.
GetSizeBlendParameters Gets blend parameters based on subtended angle.
GetAllocatedTableSize Returns the allocated number of entries.

Developer’s Guide 60 Version 4.0e

Functional Groups

Color Table Functions

The Color Table class functions are used to establish a table of
Red-Green-Blue (RGB) color values that can be referenced by polygon

objects.
PRO_Color_Table constructor Creates an instance of a PRO_Color_Table.
PRO_Color_Table destructor Destroys an instance of a PRO_Color_Table.
GetStatus Gets the status of a PRO_Color_Table object instantiation.
SetColor Sets the RGB value of a table entry. Uses integer values.
SetColor Sets the RGB value of a table entry. Uses single—precision

values.

GetAllocatedTableSize Returns the allocated number of entries.

Developer’s Guide 61 Version 4.0e

Functional Groups

Model Functions

The Model class functions allow manipulation of a database object. The object
may be defined by a pre-formatted model file that contains all of the object’s
geometry and attributes, or the object may be built up at runtime by adding
culling volumes and polygons to it.

Function Name Description

PRO_Model constructor Creates an instance of a PRO_Model using pre—formatted input
data.

PRO_Model constructor Creates an instance of a PRO_Model that will be formatted
“at runtime”.

PRO_Model constructor Creates an instance of a PRO_Model referencing shared geometry.

PRO_Model constructor Creates an instance of a PRO_Model that is a copy of another
PRO_Model.

PRO_Model destructor Destroys an instance of a PRO_Maodel.

GetModelStatus Returns the status of a model.

SetPosition Sets the model’s position. Takes an index that specifies the main
model or any of its articulated parts. Takes double—precision
values.

SetPosition Sets the model’s position. Takes an index that specifies the main
model or any of its articulated parts. Takes single—precision values.

SetPosition Sets an articulated part’s position by specifying its name. Takes
double—precision values.

SetPosition Sets an articulated part’s position by specifying its name. Takes
single—precision values.

SetOrientation Sets the model’s orientation. Takes an index that specifies the main
model or any of its articulated parts. Takes double—precision
values.

SetOrientation Sets the model’s orientation. Takes an index that specifies the main
model or any of its articulated parts. Takes single—precision values.

SetOrientation Sets an articulated part’s orientation by specifying its name.

Takes double—precision values.

Developer’s Guide 62 Version 4.0e

Functional Groups

Model Functions — Continued

Function Name Description

SetOrientation Sets an articulated part’s orientation by specifying its name.
Takes single—precision values.

SetOrientation Sets the model’s orientation. Takes an index that specifies
the main model or any of its articulated parts. Takes a
matrix of single—precision values.

SetOrientation Sets an articulated part’s orientation by specifying its name.
Takes a matrix of single—precision values.

Activate Activates an inactive model.

Deactivate Deactivates an active model.

AttachColorTable Associates a color table with a model.

SetRangeLOD Indicates that the model’s blend data will be interpreted as
ranges.

SetSizeLOD Indicates that the model’s blend data will be interpreted as
sizes.

UserMatrix Specifies the matrix to be used by the model.

IsStatic Returns type of model.

IsActive Returns current state of model.

GetPosition Gets the model’s position. Takes an index that specifies the
main model or any of its articulated parts.

Returns double—precision values.

GetPosition Gets the model’s position. Takes an index that specifies the
main model or any of its articulated parts.
Returns single—precision values.

GetPosition Gets an articulated part’s position by specifying its name.
Returns double—precision values.

GetPosition Gets an articulated part’s position by specifying its name.
Returns single—precision values.

GetOrientation Gets the model’s orientation. Takes an index that specifies
the main model or any of its articulated parts. Returns
double—precision values.

Developer’s Guide

63 Version 4.0e

Functional Groups

Model Functions — Continued

Function Name Description

GetOrientation Gets the model’s orientation. Takes an index that specifies
the main model or any of its articulated parts. Returns
single—precision values.

GetOrientation Gets an articulated part’s orientation by specifying its name.
Returns double—precision values.

GetOrientation Gets an articulated part’s orientation by specifying its name.
Returns single—precision values.

GetLocalForward Gets a model’s forward vector. Takes an index that
specifies the main model or any of its articulated parts.
Passes back data using reference variables.

GetLocalForward Gets a model’s forward vector. Takes an index that
specifies the main model or any of its articulated parts.

GetLocalForward Gets an articulated part’s forward vector by specifying the
name of the part. Passes back data using reference
variables.

GetLocalForward Gets an articulated part’s forward vector by specifying the

name of the part.

GetLocalleft Gets a model’s left vector. Takes an index that specifies the
main model or any of its articulated parts. Passes back
data using reference variables.

GetLocallLeft Gets a model’s left vector. Takes an index that specifies the
main model or any of its articulated parts.

GetLocallLeft Gets an articulated part’s left vector by specifying the name
of the part. Passes back data using reference variables.

GetLocalleft Gets an articulated part’s left vector by specifying the name
of the part.

GetLocalUp Gets a model’'s up vector. Takes an index that specifies the

main model or any of its articulated parts. Passes back
data using reference variables.

GetLocalUp Gets a model’'s up vector. Takes an index that specifies the
main model or any of its articulated parts.

Developer’s Guide 64 Version 4.0e

Functional Groups

Model Functions — Continued

Function Name Description

GetLocalUp Gets an articulated part’s up vector by specifying the
name of the part. Passes back data using reference
variables.

GetLocalUp Gets an articulated part’s up vector by specifying the

name of the part.

GetNumberOfAnimationSequences

Gets the total number of animations associated with the
model.

GetAnimationSequence

Gets the PRO_Animation object by index.

GetAnimationSequence

Gets the PRO_Animation object specified by name.

GetAnimationSequenceName

Gets the name of specified animation sequence.

GetNumberOfArticulatedParts

Gets the number of sub—parts in the model.

GetArticulatedPartMatrixIndex

Gets the index of a sub—part specified by name

GetArticulatedPartName

Gets the name of specified articulated part.

GetNumberOfTextureMaps

Gets the number of texture maps attached to polygons of
this model.

GetTextureMapName

Gets the name of specified texture map.

ProcessimmediateModeData

Flushes immediate mode data to the hardware.

ProcessMorphedPolygons

Process geometry and texture deltas for immediate mode
polygons.

AddCullingNode

Adds a culling node to the hierarchy of the model.

AddChild

Adds a culling node to the hierarchy of the model.

AddPointLight

Adds a point light culling node to the hierarchy of the
model.

AddInstanceSet

Adds an instance set culling node to the hierarchy of the
model.

AddPolygon

Adds a polygon to the hierarchy of the model.

AddChild

Adds a polygon to the hierarchy of the model.

EnableVertexSharing

Enables vertex sharing among polygons of this model.

DisableVertexSharing

Disables vertex sharing among polygons of this model.

Developer’s Guide

65 Version 4.0e

Functional Groups

Model Functions — Continued

Function Name Description

SetAutoDeleteCullingData Indicates that PRO_Culling_Node objects in hierarchy
should be automatically deleted along with parent culling
nodes.

SetAutoDeletePolygonData Indicates that PRO_Polygon objects in hierarchy should be
automatically deleted along with parent culling nodes.

SetAutoDestructCullingData Indicates that PRO_Culling_Node objects in hierarchy
should be automatically deleted when formatting is
completed.

SetAutoDestructPolygonData Indicates that PRO_Polygon objects in hierarchy should be
automatically deleted when formatting is completed.

StoreArticulatedPart Associates a 6DOF node with a model.

StoreAnimationSequence Associates an animation node with a model.

StoreTextureData Associates a PRO_Texture object with a model.

StoreTextureData Associates a texture map with a model.

Save Saves a run—time formatted model to file.

Developer’s Guide 66 Version 4.0e

Functional Groups

Animation Functions

The Animation class functions specify the characteristics and control the
functionality of animation sequences associated with a model.

Function Name Description

AnimationStartsVisible

Sets an animation to be visible at activation.

AnimationEndsVisible

Sets the animation to remain visible when deactivated.

AnimationStartsinvisible

Sets an animation to be invisible at activation.

AnimationEndslnvisible

Sets the animation to be invisible when deactivated.

ActivateSequence

Activates an animation sequence.

DeactivateSequence

Deactivates the animation sequence.

AnimationRunsForward

Specifies a forward—running animation.

AnimationRunsBackwards

Specifies a backward—running animation.

AnimationRunsMirrored

Specifies an animation that runs forward, then backward.

AnimationlsUserControlled

Specifies an animation that runs according to user controls.

AnimationRunsForever

Specifies an animation that runs continuously.

SetAnimationCycleTime

Sets the time for one cycle through the animation.
Takes a double—precision value.

SetAnimationCycleTime

Sets the time for one cycle through the animation.
Takes a single—precision value.

SetAnimationRepeatCount

Sets the number of times to run through the animation.

SetFrameActive

Activates the specified animation frame.

SetFramelnactive

Deactivates the specified animation frame.

GetAnimationCycleTime

Gets the time for one cycle through the animation.
Passes back single—precision value.

GetAnimationCycleTime

Gets the time for one cycle through the animation.
Passes back double—precision value.

GetNumberOfAnimationFrames

Gets the number of animation frames.

GetCurrentFrame

Gets the current animation frame.

GetAnimationState

Indicates whether an animation sequence is active or
inactive.

Developer’s Guide

67

Version 4.0e

Functional Groups

Culling Node Functions

The Culling Node class functions are used to build a database hierarchy that will
be used by the hardware to determine which graphical objects should be

rendered.

PRO_Culling_Node constructor Creates an instance of a PRO_Culling_Node object.

PRO_Culling_Node destructor Destroys an instance of a PRO_Culling_Node object.

GetStatus Returns status of PRO_Culling_Node instantiation.

ActivateNode Indicates that culling node should be processed by
PRO-1000 hardware.

DeactivateNode Indicates that culling node should be ignored by PRO-1000
hardware.

AddChild Adds a child culling node to a culling node.

AddChild Adds a child polygon to a culling node.

AddPointLight Adds a point light to a culling node.

AddInstanceSet Adds a child instance set to a culling node.

DetachChild Detaches a child culling node from its parent.

DetachChild Detaches a child polygon from its parent.

AttachColorTable Associates a color table with a culling node.

SetRangelLOD Indicates that the node’s blend data will be
interpreted as ranges.

SetSizeLOD Indicates that the node’s blend data will be
interpreted as sizes.

SetFeatureType Sets the feature type for blending.

SetGroupLayerNumber Sets a group layer number.

SetVolumeSizeClamp Sets an object to clamp at the last LOD transition size.

Developer’s Guide

68 Version 4.0e

Functional Groups

Culling Node Functions — Continued

Function Name Description

SetAutoDeleteCullingData

Indicates that child culling nodes should be destroyed with
their parent.

SetAutoDeletePolygonData

Indicates that child polygons should be destroyed with their
parent.

SetAutoDestructCullingData

Indicates that child culling nodes should be destroyed with
their parent.

SetAutoDestructPolygonData

Indicates that child polygons should be destroyed with their
parent.

FormatAndFlushPolygons

Formats polygons and downloads to hardware immediately.

GetFeatureType

Gets the feature type used for blending.

GetBoundingBox

Retrieves the current bounding box of a node.

GetLODNumber Gets the LOD number of the culling node.
GetGroupLayerNumber Gets the group layer number.
GetCentroid Gets the centroid of the culling volume.

HasAssociatedMatrix

Returns whether the culling node supports articulation.

Developer’s Guide

69 Version 4.0e

Functional Groups

LOD Culling Node Functions

The LOD Culling Node class functions are used to define culling nodes which
have indirect children representing levels of detail in the culling hierarchy.

Function Name Description

PRO_LOD_Culling_Node constructor Creates an instance of a PRO_LOD_Culling_Node
object.

PRO_LOD_Culling_Node destructor Destroys an instance of a PRO_LOD_Culling_Node
object.

AddChild Adds a child culling node to the culling hierarchy at
the specified LOD.

AddChild Adds a child polygon to the culling hierarchy at the
specified LOD.

Developer’s Guide 70 Version 4.0e

Functional Groups

Articulated Part Culling Node Functions

Articulated Part Culling Nodes are used to create geometry that can move
relative to the coordinate set of the parent culling node to which they are
attached. These nodes are known as dynamic coordinate sets or

six—degree—of—freedom nodes.

Function Name Description

PRO_6DOF_Culling_Node constructor

Creates a PRO_6DOF_Culling_Node object.

PRO_6DOF_Culling_Node constructor

Creates a PRO_6DOF_Culling_Node object with a
defined user matrix.

PRO_6DOF_Culling_Node destructor

Destroys a PRO_6DOF_Culling_Node obiject.

SetName Names the 6DOF Node

SetPosition Sets the position of the 6DOF node.
Uses double-precision values.

SetPosition Sets the position of the 6DOF node.

Uses single-precision values.

SetOrientation

Sets the orientation of the 6DOF node.
Uses double-precision values.

SetOrientation

Sets the orientation of the 6DOF node.
Uses single-precision values.

SetOrientation

Sets the orientation of the 6DOF node.
Passes a matrix of floating point values.

SetMotionExtents

Sets the motion limits for the 6DOF node.
Uses double-precision values.

SetMotionExtents

Sets the motion limits for the 6DOF node.
Uses single-precision values.

SetMatrix

Overrides API matrix with a user matrix.

ReplaceMatrix

Overrides the current user matrix with another.

GetName

Retrieves the name of the 6DOF Node

Developer’s Guide

71 Version 4.0e

Functional Groups

Articulated Part Culling Node Functions — Continued

Function Name Description

GetPosition Gets the current position of the 6DOF node.
GetOrientation Gets the current orientation of the 6DOF node.
GetMatrix Retrieves the 6DOF node’s matrix.

Developer’s Guide 72 Version 4.0e

Functional Groups

Animation Culling Node Functions

Animation Culling Nodes are used to manage sets of models representing
frames of an animation or pieces of models that can be turned on and off as
required by the host application. The PRO_Animation_Culling_Node class
creates a PRO_Animation_Sequence object that can also be used to transfer
control of the animation sequencing to the PRO/API.

Function Name Description

PRO_Animation_Culling_Node constructor Creates a_PRO_Animation_Culling_Node
object.

PRO_Animation_Culling_Node destructor Destroys a_PRO_Animation_Culling_Node
object.

AddChild Adds a child culling node to the culling hierarchy
for the specified frame of animation.

AddChild Adds a child polygon to the culling hierarchy for
the specified frame of animation.

SetName Names the animation sequence.

GetName Retrieves the name of the animation node.

GetAnimationSequence Retrieves the associated PRO_Animation_Se-
guence.

Developer’s Guide 73 Version 4.0e

Functional Groups

Instance Culling Node Functions

Instance Culling Nodes are used to define the top of a shared display list
segment that can be referenced later on from other parts of the scene display
list. They are normally useful in reducing the polygon storage requirements for
replicated features, such as trees, by storing a single copy of the geometry, and
simply referencing (and locating) it multiple times with little storage overhead.

Function Name Description

PRO_Instance_Culling_Node Creates an instance of a PRO_Instance_Culling_Node object.
constructor

ProcessimmediateModeData Flushes immediate mode polygons to the hardware.

EnableVertexSharing Enables vertex sharing when processing the shared geometry.

DisableVertexSharing Disables vertex sharing when processing the shared geometry.

Developer’s Guide 74 Version 4.0e

Functional Groups

Instance Reference Culling Node Functions

Instance Reference Culling Nodes are used to place the geometry linked to
PRO_Instance_Culling_Node objects in the display list. The shared geometry
is processed as if it were located at a given position with little storage overhead.
Instance references may not have other nodes attached as children.

Function Name Description

PRO_Instance_Reference Creates an instance of a PRO_Instance_Reference node.
constructor

SetlnstancelLocation Sets the position of the instance reference.
GetlnstancelLocation Gets the position of the instance reference.

Developer’s Guide 75 Version 4.0e

Functional Groups

Point Light Functions

The Point Light class is used to create instances of point luminous features.
Point lights are handled as polygons that always face the viewpoint and are not
affected by lighting, so they seem luminous during night scenes.

Function Name Description

PRO_Point_Light constructor Creates an instance of a point light.

PRO_Point_Light destructor Destroys an instance of a point light.

SetColor Defines the color of the light. Takes normalized color
values (0.0 to 1.0).

SetColor Defines the color of the light. Takes 8-bit values
(O to 255).

SetPosition Sets the position of the point light.

GetPosition Gets the position of the point light.

Developer’s Guide 76 Version 4.0e

Functional Groups

Instance Set Functions

The Instance Set class is used to create a group of instances of point features,
to achieve effects such as dust patrticles.

Function Name Description

PRO_Instance_Set constructor

Creates an instance of an instance set.

PRO_Instance_Set destructor

Destroys an instance of an instance set.

SetColor Defines the color of the instances in the set.

Takes normalized floating point values (0.0 to 1.0).
SetColor Defines the color of the instances in the set.

Takes 8-bit values (0 to 255).
SetPosition Sets the position of an instance in the set.
GetPosition Returns the position of an instance in the set.

SetActivelnstanceCount

Sets the number of instances in the set which are
active.

GetActivelnstanceCount

Gets the number of active instances in the set.

GetNumberOfinstances

Returns the total number of instances in the set.

Developer’s Guide

77 Version 4.0e

Functional Groups

Polygon Functions

The Polygon class functions are used to define the geometry of and assign

attributes to polygons.

Function Name Description

PRO_Polygon constructor

Creates an instance of a PRO_Polygon object.

PRO_Polygon destructor

Destroys an instance of a PRO_Polygon object.

AddVertex Adds a vertex to the definition of a polygon.
AddChild Adds a child polygon to a polygon.

DetachChild Detaches a child polygon from its parent polygon.
AttachTexture Associates the polygon with a texture map.
DetachTexture Disassociates the polygon from its texture map.

AttachMicroTexture

Associates the polygon with a microtexture map.

DetachMicroTexture

Disassociates the polygon from its microtexture map.

SetColor

Sets the polygon color. Takes 8-bit values (0 to 255).

SetColor

Sets the polygon color. Takes normalized values (0.0 to
1.0).

SetColorIndex

Sets the color table index for out—the—window colors.

SetSensorColorindex

Sets the color table index for sensor colors.

EnableLightingEffects Indicates that polygon is not luminous and its color will be
affected by shading, ambient light, and sun intensity.
DisableLightingEffects Indicates that polygon is luminous and its color will not be

affected by shading, ambient light, and sun intensity.

SetTranslucency

Sets the translucency value for a polygon.

SetLightModifier

Sets the amount of effect fog will have on a luminous
polygon.

SetHighPriority

Indicates that polygon will have priority over other polygons

in the viewport.

Developer’s Guide

78 Version 4.0e

Functional Groups

Polygon Functions — Continued

Function Name Description

PolygonisLayered

Indicates a stencil polygon.

IsDoubleSided

Sets the double—sided attribute of a polygon.

DoSmoothShading

Indicates that the polygon will be smooth shaded.

DoFlatShading

Indicates that the polygon will be flat shaded.

IsNotShaded

Indicates that the polygon will not be shaded.

VerticesAreClockwise

Sets the direction of vertex ordering to clockwise.

VerticesAreCounterClockwise

Sets the direction of vertex ordering to counter—clockwise.

SetXSmoothing

Enables texture wrap blending in the x (u) direction.

SetYSmoothing

Enables texture wrap blending in the y (v) direction.

SetXMirror Enables mirroring in the x (u) direction.
SetYMirror Enables mirroring in the y (v) direction.
SetNPScale Biases the texture sampling rate.

SetTranslucencyPatternSelect

Sets the blend/translucency pixel hole pattern select.

EnableAutoVertexDelete

Indicates that vertices associated with the polygon will be
deleted when polygon is deleted.

DisableAutoVertexDelete

Indicates that vertices associated with the polygon will not
be deleted when polygon is deleted.

GetLODNumber

Gets the face LOD for a polygon.

GetVertexCount

Gets the number of vertices associated with a polygon.

GetCompressedVertexCount

Gets the number of vertices associated with a polygon
after vertex sharing has been determined.

GetVertex

Returns a vertex.

IsTextured

Tests for valid texture attachment.

Developer’s Guide

79 Version 4.0e

Functional Groups

Vertex Functions

The Vertex class functions are used to define and manipulate a vertex.

Function Name Description

PRO_Vertex constructor

Creates an instance of a PRO_Vertex object with the specified
X,y,z coordinates.

PRO_Vertex constructor

Creates an instance of a PRO_Vertex object with no specified
coordinates.

PRO_Vertex destructor

Destroys an instance of a PRO_Vertex object.

SetCoordinates

Sets the coordinates of a vertex. Values are single—precision.

SetCoordinates

Sets the coordinates of a vertex. Values are double—precision.

SetMorphCoordinates

Sets the coordinates of a vertex without rounding.

SetTextureCoordinates

Sets the texture coordinates of a vertex.

SetVertexNormal

Sets the vector defining the vertex normal.

SetFixedShadingIntensity

Sets a fixed lighting value for the vertex.

OffsetVertex

Defines an offset vector for the vertex coordinates.

ScaleVertex

Defines a scale vector for the vertex coordinates.

TransformVertex

Defines a transformation matrix for the vertex coordinates.

GetCoordinates

Returns the vertex coordinates as single—precision values.

GetCoordinates

Returns the vertex coordinates as double—precision values.

GetTextureCoordinates

Returns the vertex texture coordinates as single—precision
values.

GetVertexNormal Returns the vertex normal.
IsTextured Returns TRUE if the vertex is textured.
IsShaded Returns TRUE if the vertex is shaded.

Developer’s Guide

80 Version 4.0e

Functional Groups

Texture Functions

The Texture class functions are used to define an image that will be used as a
texture map for polygons.

Function Name Description

PRO_Texture constructor

Creates an instance of a PRO_Texture object for a color image.

PRO_Texture constructor

Creates an instance of a PRO_Texture object for a monochrome
image.

PRO_Texture destructor

Destroys an instance of a PRO_Texture object.

IsContourTexture

Sets the contour texture attribute of a PRO_Texture object.

SetContourThreshold

Defines the threshold between opacity and translucency. Takes
an 8-bit value (0 to 255).

SetContourThreshold

Defines the threshold between opacity and translucency. Takes
a normalized value (0.0 to 1.0).

EnableAlpha

Enables processing of alpha channel data.

DisableAlpha

Disable processing of alpha channel data.

SetTextureFileName

Sets name of source texture file.

KeepDataAfterLoading

Indicates that map data should be retained after loading.

FreeDataAfterLoading

Indicates that map data should be released after loading.
For use if data was allocated using “alloc” functions.

DeleteDataAfterLoading

Indicates that map data should be released after loading.
For use if data was allocated using “new”.

GetTextureFileName

Returns name of source texture file.

GetOrigTextureMapWidth Returns image width before scaling or rotating.
GetOrigTextureMapHeight Returns image height before scaling or rotating.
IsTextureRGB Indicates whether map is a color image.

IsMicrotexture

Indicates whether map is a microtexture map.

Developer’s Guide

81 Version 4.0e

Functional Groups

Microtexture Functions

The Microtexture class functions are used to define an image that will be used
as a microtexture map for polygons. The Microtexture class inherits from the
PRO_Texture class. All PRO_Texture functions still apply.

Function Name Description

PRO_MicroTexture constructor Creates an instance of a PRO_MicroTexture object for a
color image.
PRO_MicroTexture constructor Creates an instance of a PRO_MicroTexture object for a

monochrome image.

PRO_MicroTexture destructor Destroys an instance of a PRO_MicroTexture object.

Developer’s Guide 82 Version 4.0e

Functional Groups

Matrix Functions

The Matrix class is an abstraction of a direction cosine matrix, which stores a
centroid and a 3x3 transformation matrix.

Function Name Description

PRO_Matrix constructor

Creates an instance of a PRO_Matrix object.

PRO_Matrix destructor

Destroys an instance of a PRO_Matrix object.

GetStatus

Gets the status of a PRO_Matrix object instantiation.

SetPosition Sets the position stored in the matrix.
Uses double—precision values.

SetPosition Sets the position stored in the matrix.
Uses single—precision values.

SetPosition Sets the position stored in the matrix.

Uses a vector of single—precision values.

SetOrientation

Sets the orientation stored in the matrix.
Uses double—precision values.

SetOrientation

Sets the orientation stored in the matrix.
Uses single—precision values.

SetOrientation

Sets the orientation stored in the matrix.
Uses a matrix of single—precision values.

SetLocalForward

Sets the forward vector.

SetLocallLeft Sets the left vector.

SetLocalUp Sets the up vector.

GetPosition Gets the position stored in a matrix.
Returns double—precision values.

GetPosition Gets the position stored in a matrix.
Returns single—precision values.

GetPosition Gets the position stored in a matrix.

Returns values via reference variables.

GetOrientation

Gets the orientation stored in a matrix.

Developer’s Guide

83 Version 4.0e

Functional Groups

Matrix Functions — Continued

Function Name Description

GetOrientation Gets the orientation stored in a matrix.
Returns values via reference variables.

GetLocalForward Gets the forward vector.

GetlLocalLeft Gets the left vector.

GetLocalUp Gets the up vector.

AttachMatrix Attach a matrix to another matrix.

DetachFromParent Detach a matrix from its parent matrix.

Developer’s Guide 84 Version 4.0e

Functional Groups

MultiGen Loader Functions

The PRO_MGen_Model class is used to load in MultiGen models (.flt files).
When the .fltfile name is passed to the constructor, the file is loaded and a model
object is created. Articulated parts, animations, LODs, and textures are all
supported. Also supported are the Real3D comments and extended attributes
that are specific to the PRO-1000 product. This class is inherited from the
PRO_Model class.

Function Name Description

PRO_MGen_Model constructor Creates an instance of a PRO_MGen_Model.

PRO_MGen_Model destructor Destroys an instance of a PRO_MGen_Model.
GetPolyCount Returns the number of polygons in the model.

GetVertCount Returns the number of vertices in the model.

Developer’s Guide 85 Version 4.0e

Sample Applications

SAMPLE APPLICATIONS

A few naming conventions are used throughout the PRO/API library. All PRO/API header files
are prefixed by “pro_". All PRO/API classes have the “PRO_" prefix. General purpose
functions (not methods of a class) are also prefixed with “PRO_".

All of these applications have been compiled with a C++ compiler and tested on both a Pentium
PC running Windows NT 3.51 and a Sun running Solaris 2.4. However, these samples should
not necessarily be used as templates for a real application. They are intended only to illustrate
concepts and functions which will be used in most application development efforts.

Note that the pre-formatted models used in these examples were selected for illustration
purposes only. The concepts presented in each sample should apply to all pre-formatted
models with similar attributes.

Developer’s Guide 86 Version 4.0e

Sample Applications

Sample 1

This application loads a pre-formatted model and rotates the model about its z axis.

The first step in any application using the PRO/API library functions is a call to PRO_Init(). This
function initializes the hardware and the internal structures of the PRO/API. After this call, the
application may create PRO/API objects and attach them together to build the desired display
list, which is downloaded to the hardware via a call to PRO_DisplayDatabase(). The last step
in any application is a call to PRO_Stop(). All dynamically allocated PRO/API objects must be
destroyed before this call, which halts communication to the hardware and deletes the API
internal structures.

In this application, a single pre-formatted model is loaded and attached to a database. The
database is then attached to a viewport that has an associated viewpoint. Here, most viewport
attributes are allowed to default. The viewport is attached to a device that specifies the
PRO-1000 unit which will display the rendered data. In this example, PRO_DisplayDatabase()
is called each time through a loop that modifies the orientation of the model.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <pro_globals.hh>
#include <pro_api_data.hh>
#include <pro_db_entity.hh>
#include <pro_memmgr.hh>
#include <pro_device.hh>
#include <pro_viewport.hh>
#include <pro_viewpoint.hh>
#include <pro_database.hh>
#include <pro_tables.hh>
#include <pro_model.hh>
#include <pro_data_block.hh>

I* */

Developer’s Guide 87 Version 4.0e

Sample Applications

int main (int argc , char *argv[])

{
PRO_Status status ;
PRO_Device *devO = NULL;
PRO_Viewport *viewport = NULL;
PRO_Viewpoint *viewpoint = NULL;
PRO_Database *scene = NULL,;
PRO_Model *modell = NULL;
long i;
double yaw ;

/I Initialize the hardware. The default memory configuration is used.

status = PRO_Init() ;

I Instantiate a device corresponding to logical unit (SCSI ID) 0.
devO = new PRO_Device(0) ;

/I Instantiate a model with the specified pre-formatted filename.
modell = new PRO_Model (“texcube”) ;

if (modell->GetModelStatus() '= PRO_SUCCESS)

{

printf(“Failed loading model 'texcube’.\n") ;
delete model1 ;

PRO_Stop() ;

return -1 ;

}

/I Set the model to interpret blend values as ranges.
modell->SetRangeLOD() ;

/I Set the model’s initial position and orientation.
modell—>SetPosition(0.0, 0.0, 0.0) ;
modell—>SetOrientation(0.0, 0.0, 30.0) ;

/I Instantiate a database and attach the model to the scene.
scene = new PRO_Database () ;
scene—>AttachModel (modell) ;

Developer’s Guide 88

Version 4.0e

Sample Applications

/I Instantiate a viewport and attach the scene to the viewport.
viewport = new PRO_Viewport() ;
viewport—>AttachDatabase (scene) ;

/Il Instantiate a viewpoint and attach the viewpoint to the viewport.
viewpoint = new PRO_Viewpoint() ;
viewport—>AttachViewpoint (viewpoint) ;

/I Attach the viewport to the device.
devO—>AttachViewport(viewport) ;

/I Set the viewpoint’s initial position and orientation.
viewpoint—>SetPosition (—-20.0, 0.0, 20.0) ;
viewpoint—>SetOrientation (0.0, 45.0,0.0) ;

/I Spin the model around on its z axis for a while.
for(i=0; i<3600; i++)
{
yaw = (double)(i % 360) ;
model1—>SetOrientation (0.0, 0.0, yaw) ;

/I Send display list to hardware for rendering.
status = PRO_DisplayDatabase() ;
}

/I Delete all the dynamically allocated objects.
if (viewpoint) delete viewpoint ;

if (viewport) delete viewport ;

if (scene) delete scene ;

if (modell) delete modell ;

if (dev0) delete devO ;

/I Halt communication with the hardware.
status = PRO_Stop() ;

return O ;

Developer’s Guide 89 Version 4.0e

Sample Applications

Sample 2

This application loads a pre-formatted model that has articulated parts, and rotates the
articulated part about its y axis.

As in Sample Application #1, this example begins with a call to PRO _Init() and ends with a call
to PRO_Stop(). It also instantiates a single pre-formatted model and the same associations
are made between model, database, viewport, viewpoint, and device. In this example,
however, the model has an articulated part that is manipulated independent of the main model.
An index is obtained for the articulated part in the model’s hierarchy. That index is passed to
functions that set the position and orientation of the sub-part. This sample program
demonstrates by loading a model of a railroad gate, and moving its arm up and down.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <pro_globals.hh>
#include <pro_api_data.hh>
#include <pro_db_entity.hh>
#include <pro_memmgr.hh>
#include <pro_device.hh>
#include <pro_viewport.hh>
#include <pro_viewpoint.hh>
#include <pro_database.hh>
#include <pro_tables.hh>
#include <pro_model.hh>
#include <pro_data_block.hh>

I* */

int main (int argc , char* argv[])

{
PRO_Status status ;
PRO_Device *devO = NULL;
PRO_Viewport *viewport = NULL;
PRO_Viewpoint *viewpoint = NULL;
PRO_Database *scene = NULL;

Developer’s Guide 90 Version 4.0e

Sample Applications

PRO_Model *modell = NULL;
long i, up;

long arm_id =0;

double pitch ;

/I Initialize the hardware. The default memory configuration is used.
status = PRO_Init() ;

I Instantiate a device corresponding to logical unit (SCSI ID) 0.
devO = new PRO_Device(0) ;

/I Set the background color to yellow so you can see the black model.
devO—>SetBackgroundColor((long255, (long)255, (long)0) ;

Il Instantiate a model with the specified pre-formatted filename.
modell = new PRO_Model (“rrgate”) ;

if (modell->GetModelStatus() != PRO_SUCCESS)

{

printf(“Failed loading model %s.\n”, model_name) ;
delete modell ;

PRO_Stop() ;

return -1 ;

}

/I Set the model to interpret blend values as ranges.
modell—>SetRangeLOD() ;

/I Set the model’s initial position and orientation.
modell—>SetPosition(0.0, 0.0, 0.0) ;
modell—>SetOrientation(0.0, 0.0, 90.0) ;

/I Get an index corresponding to the named art part.
arm_id = modell—>GetArticulatedPartMatrixIndex(“arm”) ;

/I Set the art part’s initial position and orientation.
modell->SetPosition(0.0, 0.0, 3.0, arm_id) ;
modell—>SetOrientation(0.0, 0.0, 0.0, arm_id) ;

/I Instantiate a database and attach the model to the scene.
scene = new PRO_Database () ;
scene—>AttachModel (modell) ;

Developer’s Guide 91 Version 4.0e

Sample Applications

/I Instantiate a viewport and attach the scene to the viewport.
viewport = new PRO_Viewport() ;
viewport—>AttachDatabase (scene) ;

/Il Instantiate a viewpoint and attach the viewpoint to the viewport.
viewpoint = new PRO_Viewpoint() ;
viewport—>AttachViewpoint (viewpoint) ;

/I Attach the viewport to the device.
devO—>AttachViewport(viewport) ;

/I Set the viewpoint’s initial position and orientation.
viewpoint—>SetPosition (-100.0, 0.0, 70.0) ;
viewpoint—>SetOrientation (0.0, 35.0, 0.0) ;

/I Move the art part up and down for a while.

up=0;
for (i=0; i<3600; i++)
{

pitch = (double)(i % 90) ;

if((i%90)==0)up=lup;
if (up) pitch = (90 — pitch);
modell—>SetOrientation (0.0, pitch, 0.0, arm_id) ;

/I Send display list to hardware for rendering.
status = PRO_DisplayDatabase() ;
}

/I Delete all the dynamically allocated objects.
if (viewpoint) delete viewpoint ;

if (viewport) delete viewport ;

if (scene) delete scene ;

if (modell) delete modell ;

if (dev0) delete devO ;

/I Halt communication with the hardware.
status = PRO_Stop() ;

return O ;

Developer’s Guide 92 Version 4.0e

Sample Applications

Sample 3

This application loads four pre-formatted models. Each model has an animation sequence that
IS set up to run in a different way.

As in the previous examples, this example begins with a call to PRO_Init() and ends with a call
to PRO_Stop(). This example loads the same pre-formatted model four times, placing each
model at a different position. Each model contains one animation sequence. The first model's
animation sequence is set to run forward through its frames continuously, with one cycle set
to take 1 second. The second model’'s animation is set to run backward through its frames
continuously, with one cycle set to take 2 seconds. The third model's sequence is set to run
through its frames first forward then back again, continuously, with each cycle taking 3
seconds. The last model's animation sequence is user controlled. The sample application runs
in aloop, each time setting the frame of the user-controlled animation to be displayed, and then
calling PRO_DisplayDatabase() to write the display list for rendering.

#include <stdlib.h>

#include <stdio.h>

#include <pro_symbol_table.hh>
#include <pro_external_reference.hh>
#include <pro_globals.hh>
#include <pro_db_entity.hh>
#include <pro_memmgr.hh>
#include <pro_device.hh>
#include <pro_viewport.hh>
#include <pro_viewpoint.hh>
#include <pro_database.hh>
#include <pro_tables.hh>
#include <pro_model.hh>
#include <pro_data_block.hh>
#include <pro_animation.hh>

I* *

int main (int argc, char *argv[])

{
PRO_Status status ;

Developer’s Guide 93 Version 4.0e

Sample Applications

PRO_Device *devO=NULL ;

PRO_Viewport *viewport = NULL ;

PRO_Viewpoint *viewpoint = NULL;

PRO_Database *scene = NULL;

PRO_Model *modell = NULL;

PRO_Model *model2 = NULL,;

PRO_Model *model3 = NULL;

PRO_Model *model4 = NULL,;
PRO_Animation_Sequence *animation_sequence = NULL;
long i;

/I Initialize the hardware. The default memory configuration is used.

status = PRO_Init() ;

Il Instantiate a device corresponding to logical unit (SCSI ID) 0.

devO = new PRO_Device(0) ;

/I Instantiate models with the specified pre-formatted filename.

modell = new PRO_Model (“caselQ”) ;

model2 = new PRO_Model (“casel0”) ;

model3 = new PRO_Model (“casel0”) ;

model4 = new PRO_Model (“caselQ”) ;

if (modell->GetModelStatus() '= PRO_SUCCESS ||
model2—>GetModelStatus() != PRO_SUCCESS ||
model3—>GetModelStatus() != PRO_SUCCESS ||
model4—>GetModelStatus() '= PRO_SUCCESS)

printf(“Failed loading model 'casel10’.\n") ;
if (modell) delete modell ;

if (model2) delete model2 ;

if (model3) delete model3 ;

if (model4) delete model4 ;

PRO_Stop() ;

return -1 ;

}

/I Set the initial position and orientation of each model.
if (modell) modell->SetPosition (0.0, 100.0, 100.0);

Developer’s Guide 94

Version 4.0e

Sample Applications

if (model2) model2—>SetPosition (0.0 ,-100.0, 100.0);
if (model3) model3—>SetPosition (0.0,-100.0, —100.0) ;
if (model4) model4—>SetPosition (0.0, 100.0,-100.0);

Il Instantiate a database and attach the model to the scene.
scene = new PRO_Database () ;

if (modell) scene—>AttachModel (modell) ;

if (model2) scene—>AttachModel (model2) ;

if (model3) scene—>AttachModel (model3) ;

if (model4) scene—>AttachModel (model4) ;

/I Instantiate a viewport and attach the scene to the viewport.
viewport = new PRO_Viewport() ;
viewport—>AttachDatabase (scene) ;

/I Instantiate a viewpoint and attach the viewpoint to the viewport.
viewpoint = new PRO_Viewpoint();
viewport—>AttachViewpoint (viewpoint) ;

/I Attach the viewport to the device.
devO—>AttachViewport (viewport) ;

/I Set the viewpoint's initial position and orientation.
viewpoint—>SetPosition (-800.0, 0.0, 0.0) ;
viewpoint—>SetOrientation (0.0, 00.0, 0.0) ;

if (modell)
{

/I Get the first model's animation sequence by name.

animation_sequence = modell->GetAnimationSequence(“gl”) ;

/I Set the animation’s behavior and activate it.
animation_sequence—>AnimationRunsForever() ;
animation_sequence—>AnimationRunsForward() ;
animation_sequence—>SetAnimationCycleTime(1.0) ;
animation_sequence—>ActivateSequence() ;

}

if (model2)
{

Developer’s Guide 95

Version 4.0e

Sample Applications

/I Get the second model’s animation sequence by name.

animation_sequence = model2—>GetAnimationSequence(“gl”) ;

/I Set the animation’s behavior and activate it.
animation_sequence—>AnimationRunsForever() ;
animation_sequence—>AnimationRunsBackwards() ;
animation_sequence—>SetAnimationCycleTime(2.0) ;
animation_sequence—>ActivateSequence() ;

}

if (model3)
{

/I Get the third model’s animation sequence by name.

animation_sequence = model3—>GetAnimationSequence(“gl”) ;

/I Set the animation’s behavior and activate it.
animation_sequence—>AnimationRunsForever() ;
animation_sequence—>AnimationRunsMirrored() ;
animation_sequence—>SetAnimationCycleTime(3.0) ;
animation_sequence—>ActivateSequence() ;

}

if (model4)
{

/I Get the fourth model’'s animation sequence by name.

/I This animation sequence is user—controlled (the default state).
animation_sequence = model4—>GetAnimationSequence(“gl”) ;

/I Set the animation’s behavior and activate it.
animation_sequence—>AnimationStartsinvisible() ;
animation_sequence—>AnimationEndslInvisible() ;

}

if (modell) modell—>SetOrientation (0.0, 0.0, 90.0) ;
if (model2) model2—>SetOrientation (0.0, 0.0, 90.0) ;
if (model3) model3—>SetOrientation (0.0, 0.0, 90.0) ;
if (model4) model4—>SetOrientation (0.0, 0.0, 90.0) ;

for (i=0;i<1100;i++)
{

Developer’s Guide 96

Version 4.0e

Sample Applications

/I Activate one frame of the user—controlled animation.
if (model4) animation_sequence—>SetFrameActive (i % 11) ;

/I Send display list to hardware for rendering.
status = PRO_DisplayDatabase() ;

/I Deactivate the frame of the user—controlled animation.

if (model4) animation_sequence—>SetFramelnactive (i % 11) ;

}

/I Delete all the dynamically allocated objects.
if (viewport) delete viewport ;

if (scene) delete scene ;

if (modell) delete modell ;

if (model2) delete model2 ;

if (model3) delete model3 ;

if (modeld) delete model4 ;

if (viewpoint) delete viewpoint ;

if (dev0) delete devO;

/I Halt communication with the hardware.
status = PRO_Stop() ;

return O ;

Developer’s Guide 97

Version 4.0e

Sample Applications

Sample 4

This application builds an immediate mode model and rotates the model about its z axis while

morphing its vertices in realtime.

This sample application is an immediate mode version of Sample Application #1. This example
begins with a call to PRO_Init() and ends with a call to PRO_Stop(). It instantiates a single
model and the same associations are made between model, database, viewport, viewpoint,
and device. In this example, however, the model is not created from a file with geometry and
attributes predefined. Instead, vertices are created and added to polygons, which in turn are
assigned attributes and added to the model to define its geometry. Here, the polygons are two
quadrilaterals with a shared edge. The application cycles at 60 Hz, rotating the model and

modifying its vertices each time the model is rendered.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <pro_globals.hh>
#include <pro_api_data.hh>
#include <pro_db_entity.hh>
#include <pro_memmgr.hh>
#include <pro_device.hh>
#include <pro_viewport.hh>
#include <pro_viewpoint.hh>
#include <pro_database.hh>
#include <pro_tables.hh>
#include <pro_model.hh>
#include <pro_polygon.hh>
#include <pro_data_block.hh>

I* */

int main (int argc , char *argv[])

{
PRO_Status status ;
PRO_Device *devO = NULL;

Developer’s Guide 98

Version 4.0e

Sample Applications

PRO_Viewport *viewport = NULL;
PRO_Viewpoint *viewpoint = NULL;
PRO_Database *scene = NULL,;
PRO_Model *modell = NULL;
PRO_Vertex vertices[6] ;
PRO_Polygon *polygonl = NULL,;
PRO_Polygon *polygon2 = NULL;
long i

double yaw ;

/' Initialize the hardware. The default memory configuration is used.

status = PRO_Init() ;

/I Instantiate a device corresponding to logical unit (SCSI ID) 0.
devO = new PRO_Device(0) ;

/I Instantiate a model to which polygons will be attached.
modell = new PRO_Model() ;
if (modell->GetModelStatus() '= PRO_SUCCESS)

{

printf(*Failed instantiating model.\n”) ;
delete modell ;

PRO_Stop() ;

return -1 ;

}

/I Set the model’s initial position and orientation.
modell—>SetPosition(0.0, 0.0, 0.0) ;
model1l—>SetOrientation(0.0, 0.0, 0.0) ;

/I Instantiate a database and attach the model to the scene.
scene = new PRO_Database () ;
scene—>AttachModel (modell) ;

/I Instantiate a viewport and attach the scene to the viewport.
viewport = new PRO_Viewport() ;
viewport—>AttachDatabase (scene) ;

Developer’s Guide 99

Version 4.0e

Sample Applications

/I Instantiate a viewpoint and attach the viewpoint to the viewport.
viewpoint = new PRO_Viewpoint() ;
viewport—>AttachViewpoint (viewpoint) ;

/I Attach the viewport to the device.
devO—>AttachViewport(viewport) ;

/I Set the viewpoint’s initial position and orientation.
viewpoint—>SetPosition (-800.0, 0.0, 0.0) ;
viewpoint—>SetOrientation (0.0, 0.0, 0.0) ;

/I Inititalize the vertex coordinates for two quadrilaterals.
vertices[0].SetCoordinates (0.0, 100.0, 100.0);
vertices[1].SetCoordinates (0.0 , -100.0, 100.0);
vertices[2].SetCoordinates (0.0, -100.0,-100.0) ;
vertices[3].SetCoordinates (0.0, 100.0,-100.0);
vertices[4].SetCoordinates (100.0 , —100.0, -100.0) ;
vertices[5].SetCoordinates (100.0, 100.0,-100.0);

/I Create two immediate mode polygons
polygonl = new PRO_Polygon() ;
polygon2 = new PRO_Polygon() ;

/I Attach polygons to model
modell->AddPolygon (polygonl) ;
modell—>AddPolygon (polygon2) ;

/I Make the polygons double sided so that they are always visible.
polygonl—>IsDoubleSided() ;
polygon2—>IsDoubleSided() ;

/I Assemble the vertex list for polygon 1
polygonl—>AddVertex (&vertices[0]) ;
polygonl—>AddVertex (&vertices[1]) ;
polygonl—>AddVertex (&vertices[2]) ;
polygonl—>AddVertex (&vertices[3]) ;

/I Assemble the vertex list for polygon 2
polygon2—>AddVertex (&vertices[0]) ;

Developer’s Guide 100 Version 4.0e

Sample Applications

polygon2—>AddVertex (&vertices[1]) ;
polygon2—>AddVertex (&vertices[4]) ;
polygon2—>AddVertex (&vertices[5]) ;

/I Spin the model around on its z axis for a while.

for(i=0; i<3600; i++)

{
/I Change the vertex coordinates in real-time.
vertices[0].SetCoordinates (0.0, 100.0 + (30.0*cos(i/10.0)) , 100.0 + (30.0*cos(i/10.0))) ;
vertices[1].SetCoordinates (0.0 , =100.0 — (30.0*cos(i/10.0)) , 100.0 + (30.0*cos(i/10.0))) ;
vertices[2].SetCoordinates (0.0, —100.0 + (30.0*cos(i/10.0)) , —100.0 — (30.0*cos(i/10.0))) ;
vertices[3].SetCoordinates (0.0, 100.0 — (30.0*cos(i/10.0)) , —100.0 — (30.0*cos(i/10.0))) ;

yaw = (double)(i % 360) ;
modell—>ProcessimmediateModeData() ;
modell—>SetOrientation (0.0, 0.0, yaw) ;

/I Send display list to the hardware for rendering.
status = PRO_DisplayDatabase() ;
}

/I Delete all the dynamically allocated objects.
if (viewpoint) delete viewpoint ;

if (viewport) delete viewport ;

if (scene) delete scene ;

if (modell) delete modell ;

if (dev0) delete devO ;

if (polygonl) delete polygonl ;

if (polygon2) delete polygon2 ;

/I Halt communication with the hardware.
status = PRO_Stop() ;

return O ;

Developer’s Guide 101 Version 4.0e

Function Reference

FUNCTION REFERENCE

Configuration Functions

The Configuration functions provide customized control over the PRO-1000 hardware
configuration. Note that making configuration changes may be done only before
communication with the PRO-1000 has been established (before PRO_Init is called). By
default all logical units are set to receive data. A default memory configuration is provided by
the PRO/API. It is not mandatory to use these functions.

Configuration functions are the only PRO/API functions which may be invoked before a call
to PRO_Init.

(Configuration Functions)

PRO_ConfigureMemory
Sets the memory configuration.

PRO_Status PRO_ConfigureMemory (long num_viewports,
long num_blend_tables,
long num_databases,
long num_models_per _db,
long num_matrices,
long update_memsize,
long animation_frame _count) ;

Description

Sets the hardware memory configuration to support the number of entities specified by
the user.

Developer’s Guide 102 Version 4.0e

Function Reference

Arguments
long num_viewports Maximum number of PRO_Viewport objects to be
instantiated by the application.
long num_blend tables Maximum number of PRO_LOD_Table objects to
be instantiated by the application.
long num_databases Maximum number of PRO_Database objects to be

instantiated by the application.

long num_models_per_db Maximum number of PRO_Model objects to be
associated with any one PRO_Database.

long num_matrices Maximum number of coordinate sets to be used
across all models in all databases in all viewports.
The default value is 1024, and the maximum value
supported by the hardware is 4096.

long update_memsize The size in bytes of the maximum amount of data to be
passed from the application to the renderer. The default
is 393216 bytes (96K 32—bit words). The value must be
a multiple of 4 bytes.

long animation_frame_count The maximum number of frames in any animation.
The default is zero.

Return Value

PRO_SUCCESS if successful.
PRO_FAILURE if function was invoked after calling PRO_Init.

Application Notes

This function may be invoked prior to calling function PRO_Init(), but at no other time.

Developer’s Guide 103 Version 4.0e

Function Reference

(Configuration Functions)

PRO_AbbreviatedConfigureMemory
Sets the memory configuration.

PRO_Status PRO_AbbreviatedConfigureMemory (long num_matrices,
long update_memsize,
long pingpong_memsize) ;

Description

Sets the hardware memory configuration to support the number of entities specified by
the user.

Arguments

long num_matrices Maximum number of coordinate sets to be used
across all models in all databases in all viewports.
The default value is 4096, which is the maximum
number supported by the hardware.

long update_memsize The size in bytes of the maximum amount of data to be
passed from the application to the renderer. The default
Is 393216 bytes (96K 32-bit words). The value must be
a multiple of 4 bytes.

long pingpong _memsize The size in bytes of culling memory where viewports,
animation sequences, and databases are stored. The
default is 16384 bytes. The value must be a multiple of
4 bytes.

Return Value

PRO_SUCCESS if successful.
PRO_FAILURE if function was invoked after calling PRO_Init.

Developer’s Guide 104 Version 4.0e

Function Reference

Application Notes

This function may be invoked prior to calling function PRO_Init(), but at no other time.

Developer’s Guide 105 Version 4.0e

Function Reference

(Configuration Functions)

PRO_SetLogicalUnitOn
Allows display list data to be processed on this device.

PRO_Status PRO_SetLogicalUnitOn (long lun) ;

Description

Indicates that display list data should be sent to and be processed by the PRO-1000
unit associated with the specified logical unit. This is the default state for all attached
units.

Arguments

long lun The logical unit number of the device.
The default value is —1.

Return Value

PRO_SUCCESS if successful.
PRO_FAILURE if function was invoked after calling PRO_Init().

Application Notes

This function may be invoked prior to calling function PRO_Init(), but at no other time.

The default value for the logical unit number (-1) denotes the default device. The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 106 Version 4.0e

Function Reference

(Configuration Functions)

PRO_SetLogicalUnitOff
Inhibits display list data from being processed on this device.

PRO_Status PRO_SetLogicalUnitOff (long lun) ;

Description

Indicates that display list data should not be sent to or processed by this PRO-1000
unit. This is used so that two applications running on the same host computer can
communicate with a different subset of attached PRO-1000 units.

Arguments

long lun The logical unit number of the device.
The default value is —1.

Return Value

PRO_SUCCESS if successful.
PRO_FAILURE if function was invoked after calling PRO_Init().

Application Notes

This function may be invoked prior to calling function PRO_Init(), but at no other time.

The default value for the logical unit number denotes the default device. The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 107 Version 4.0e

Function Reference

Hardware Interface and Global Functions

The Hardware Interface and Global functions are used to communicate with the PRO-1000
hardware, to get status back from the hardware, and to configure general attributes which are
not associated with any specific display list object.

(Hardware Interface and Global Functions)

PRO_Init
Initializes communication with the PRO-1000 hardware.

PRO_Status PRO_Init (PRO_Update_Rate update_rate,
PRO_Overload_Mode overload _mode,
PRO_Display_Select display select,
PRO_Line_Rate line_rate) ;

Description

Establishes communications with the graphics engine and initializes the control
structures used by the PRO/API graphics library. With the exception of calls to
Configuration functions, no graphics library functions may be called and no graphics
library objects may be instantiated before PRO_Init() is invoked.

Arguments

PRO_Update_Rate update_rate The rate at which graphics updates are
processed, based on the display line rate.
Values are UPDATE_60_HERTZ,
UPDATE_50 HERTZ, UPDATE_30_ HERTZ,
and UPDATE_25 HERTZ.
The default value is UPDATE_60 HERTZ.
See PRO_SetUpdateRate for details.

Developer’s Guide 108 Version 4.0e

Function Reference

PRO_Overload_Mode overload mode The processing overload behavior of the
hardware. Values are OVERLOAD_ON,
OVERLOAD_OFF and
EXTENDED_OVERLOAD.
The default is OVERLOAD_OFF.
See PRO_SetOverloadMode for details.

PRO_Display_Select display select The number of output devices supported by
the graphics engine. Values are
SINGLE_DISPLAY, DUAL_DISPLAY, and
STEREO_DISPLAY. The default is
SINGLE_DISPLAY.

PRO_Line_Rate line_rate The displayed lines and pixels. Values are
dependent on firmware configuration.
The default is VGA_640X480.
See PRO_SetDisplaySelect for details.

Return Value
PRO_SUCCESS or PRO_FAILURE.

Application Notes

This function must be the first called by the application after (optionally) calling any
memory configuration or logical unit enable/disable functions. This function may not be
used again by the application until PRO_Stop has been invoked.

The update rate must match the selected display line rate. For stereo, use the
UPDATE_120 HERTZ update rate, the STEREO_DISPLAY display select, and the
VGA_640X480 line rate.

Developer’s Guide 109 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_InitOffline
Initializes display list for offline mode.

PRO_Status PRO_InitOffline (void) ;

Description

Initializes the control structures used by the PRO/API graphics library for processing in
offline mode. Offline mode is used to process models and save formatted data to a file;
in this mode, no data will be rendered by the PRO-1000. No other functions should be
called before PRO_InitOffline() is invoked.

Arguments

None.
Return Value
PRO_SUCCESS or PRO_FAILURE.

Application Notes

This function is an alternative to calling PRO_Init().

This function must be the first called by the application. This function may not be used
again by the application until PRO_Stop has been invoked.

Developer’s Guide 110 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_Stop
Shuts down communication with the PRO-1000 hardware.

PRO_Status PRO_Stop (void) ;

Description

Shuts down communications to the PRO-1000 graphics engine and frees up all
memory associated with graphics library structures. Any PRO/API objects that were
allocated dynamically must be deleted before calling PRO_Stop.

Arguments

None.
Return Value

PRO_SUCCESS or PRO_FAILURE.
Application Notes

No PRO/API objects are valid after calling PRO_Stop. Only calls to PRO/API
Configuration functions may be made between PRO_Stop and a call to PRO_Init.

Developer’s Guide 111 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_DisplayDatabase
Processes the updates to the display list.

PRO_Status PRO_DisplayDatabase (void) ;

Description

Processes updates to the display list and writes them to the PRO-1000 for rendering.

Arguments

None.

Return Value

PRO_SUCCESS or PRO_FAILURE.

Application Notes

The picture on the display will not change until this function is invoked.

Developer’s Guide 112 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_LoadModelDynamically
Loads a pre—formatted model dynamically.

void *PRO_LoadModelDynamically (PRO_Model **model _pointer_address,
char *filename,
char *texture_path,
char *uf _path,
long high_priority_model,
void (*user_callback)(PRO_Model *model,
void *user_data),
void *user_data) ;

Description

This function is used to issue a request for a dynamic model load. The model
requested will be added to the dynamic load model queue and processed at a later time
as allowed by the host system CPU and I/O load. Completion of a model load request
is signalled by a valid model pointer and, if requested, a user callback will be invoked.

Arguments

PRO_Model **model_pointer_address Address of user pointer which will be initialized
to zero during this call and then set to a valid
PRO_Model pointer value when the requested
model load is complete.

char *filename The name of file (full path but no extension)
containing model data to be loaded.
char *texture_path The path to texture maps. By default, the

directory containing the model is used.

Developer’s Guide 113 Version 4.0e

Function Reference

char *uf_path The path to pre—formatted external reference
files. By default, the directory containing the
model is used.

long high_priority_model Indicates whether this is a high priority model
whose load request should be processed
immediately. This flag defaults to O (false).

void (*user_callback)

(PRO_Model *model, void *user_data)

User function to be called after the model load
request has been processed. By default, no
callback is made.

void *user_data Pointer to the data that will be passed to the
user defined callback function when invoked.
By default, no user data is passed.

Return Value

An identifier that is unique for every model loaded. The unique ID can be used to
unload the model in the cases when the dynamic load request has not yet been
satisfied.

Application Notes

The picture on the display will not change when this function is invoked.

Developer’s Guide 114 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_UnloadDynamicModel
Unloads a dynamically loaded model.

void PRO_UnloadDynamicModel (void *id) ;

Description

Removes a model from the dynamic load model queue. The ID that is passed must be
an ID returned by the PRO_LoadModelDynamically function.

Arguments
void *id ID retuned by PRO_LoadModelDynamically.
Return Value

None.

Application Notes

This function may be called only if the dynamic model request is pending. If called with
an invalid or no longer current ID (the model has already been loaded), this function
will do nothing.

Developer’s Guide 115 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetGenlock
Sets the GENLOCK between multiple PRO-1000 units.

void PRO_SetGenlock (long master_Ilun) ;

Description

GENLOCKS the displays when there is more than one PRO-1000 unit or when there is
an external device driving the display sync.

Arguments

long master_lun The ID of the master PRO-1000. Values are 0 through
(number of units — 1), PRO_EXTERNAL_GENLOCK, or
PRO_NO_GENLOCK. The default is O.

Return Value

None.

Application Notes

At initialization, PRO-1000 units are not GENLOCK'd.

Developer’s Guide 116 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetUpdateRate
Sets the realtime update rate.

PRO_Status PRO_SetUpdateRate (PRO_Update_Rate update_rate, long lun) ;

Description

Sets the realtime update rate to the full display update rate (60 or 50 hertz) or to half
the display update rate (30 or 25 hertz).

Refer to the Hardware Overview section for Display Interface characteristics.

Arguments

PRO_Update Rate update_rate The rate at which graphics updates are
processed, based on the display line rate.
Valid values are UPDATE_60 HERTZ,
UPDATE_30 HERTZ, UPDATE_50 HERTZ, and
UPDATE_25 HERTZ.

long /un The logical unit number of the device.
The default value is 1.

Return Value

PRO_SUCCESS if successful.
PRO_INVALID_LUN if an invalid logical unit number was provided.
PRO_UNSUPPORTED_MODE if an invalid update rate was provided.

Application Notes

The default value for the logical unit number denotes the default device. The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 117 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetOverloadMode
Sets the realtime processing overload behavior.

This function is obsolete.

To set the overload mode for a device, instantiate a PRO_Device object for a specific
logical unit and invoke Device Function SetOverloadMode().

To set the overload mode for the default device (logical unit —1), get a pointer to the
default PRO_Device object using function PRO_GetDefaultDevice(). The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 118 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetDisplaySelect
Sets the display sync select based on number of displays and the desired line rate.

This function is obsolete.

To set the display sync select for a device, instantiate a PRO_Device object for a
specific logical unit and invoke Device Function SetDisplaySelect().

To set the display sync select for the default device (logical unit —1), get a pointer to the
default PRO_Device object using function PRO_GetDefaultDevice(). The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 119 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetForegroundColor
Sets the foreground color of the display.

This function is obsolete.

To set the foreground color for a device, instantiate a PRO_Device object for a specific
logical unit and invoke Device Function SetForegroundColor().

To set the foreground color for the default device (logical unit —1), get a pointer to the
default PRO_Device object using function PRO_GetDefaultDevice(). The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 120 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetBackgroundColor
Sets the background color of the display.

This function is obsolete.

To set the background color for a device, instantiate a PRO_Device object for a specific
logical unit and invoke Device Function SetBackgroundColor().

To set the background color for the default device (logical unit —1), get a pointer to the
default PRO_Device object using function PRO_GetDefaultDevice(). The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 121 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetGamma
Sets the gamma correction for the device.

This function is obsolete.

To set the gamma correction for a device, instantiate a PRO_Device object for a
specific logical unit and invoke Device Function SetGammay).

To set the gamma correction for the default device (logical unit —1), get a pointer to the
default PRO_Device object using function PRO_GetDefaultDevice(). The
characteristics and initial attributes of the default device are described in the Device
section in the Concepts and Object Data Types chapter.

Developer’s Guide 122 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetPointLightDetall
Sets the number of edges of the lights.

void PRO_SetPointLightDetail (long number_of sides) ;

Description

Sets the number of edges of the point light model.

Arguments

long number_of_sides The number of sides for the point light polygon.
Valid number of sides are 4 through 31.

Return Value

None.

Application Notes

None.

Developer’s Guide 123 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetPointLightFeatureType
Sets the point light size clamp feature type.

void PRO_SetPointLightFeatureType (long feature type) ;

Description

Sets the feature type for the point light polygon. The blending and volume clamping
can be controlled by the blend table entry corresponding to the input feature type
index.

Arguments

long feature type The feature type (blend table entry index) of
the point light model.

Return Value

None.

Application Notes

None.

Developer’s Guide 124 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetPointLightSize
Sets the physical culling size of the lights.

void PRO_SetPointLightSize (float size) ;

Description

Sets the physical culling size of the polygon to be used as the point light model in
database units.

Arguments

float size The radius of the point light polygon. The default value is 1.0.

Return Value

None.

Application Notes

None.

Developer’s Guide 125 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetPointLightPolygon
Sets the polygon to be used as point light model.

void PRO_SetPointLightPolygon (PRO_Polygon *point_light _polygon) ;
Description
Defines the polygon to be used as a point light model.

Arguments

PRO_Polygon *point_light_polygon A pointer to the PRO_Polygon object to be
used as the point light polygon.

Return Value

None.

Application Notes

This function may be used if the default polygon provided by the PRO/API does not
meet the user requirements. The point light polygon must be modeled in the Y-Z
plane.

Developer’s Guide 126 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetMicrotextureMapCount
Sets the number of microtexture maps.

void PRO_SetMicrotextureMapCount (long count) ;

Description

Sets the number of microtexture maps to be used. This value defaults to eight on a
PRO-1000 with expanded texture memory; otherwise, the default is four. This value
can be set to zero, four on any system. This value can be set to eight on a PRO-1000
with expanded texture memory.

Arguments

long count The number of microtexture maps. Valid settings are zero,
four, or eight (expanded texture memory systems only).

Return Value

None.

Application Notes

This function must be invoked before any textures are created. This function affects
the texture memory configuration so it may not be called again once any PRO_Texture
objects have been created.

Developer’s Guide 127 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_SetTexturePageSize
Sets the page size in texture memory.

This function is obsolete.

Developer’s Guide 128 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_ReloadLogo
Reloads the spinning Real 3D model.

void PRO_ReloadLogo (void) ;

Description

Reloads the default database, which is the spinning Real 3D logo.

Arguments

None.

Return Value

None.

Application Notes

None.

Developer’s Guide 129 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetNumberOfLogicalUnits
Returns the number of attached PRO-1000 devices.

long PRO_GetNumberOfLogicalUnits (void) ;

Description

Returns the number of PRO-1000 units found on the SCSI bus.
Arguments

None.
Return Value

The number of PRO-1000 systems found, or zero if the function is called before
PRO_Init.

Application Notes

None.

Developer’s Guide 130 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetNumberOfAvailableTexels
Returns the size of texture memory in texels.

long PRO_GetNumberOfAvailableTexels (void) ;

Description

Returns the available texture memory size, in texels.

Arguments

None.

Return Value

The number of free texels currently available in texture memory.

Application Notes

None.

Developer’s Guide 131

Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetMicrotextureMapCount
Returns the number of microtexture maps.

long PRO_GetMicrotextureMapCount (void) ;

Description

Returns the maximum number of microtexture maps defined by the current texture
memory configuration.

Arguments

None.

Return Value

The maximum number of microtexture maps.

Application Notes

If not explicitly set by user, this value defaults to eight on a PRO-1000 with expanded
texture memory; four on other systems.

Developer’s Guide 132 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetFirmwareRevision
Returns the firmware version of the PRO device.

This function is obsolete.

To get the firmware revision associated with a PRO-1000 device, use the Device
Function GetFirmwareRevision(). This requires a PRO_Device object for each logical
unit.

Developer’s Guide 133 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetModelNumber
Return the model number of the PRO device.

This function is obsolete.

To get the model number associated with a PRO-1000 device, use the Device Function
GetModelNumber(). This requires a PRO_Device object for each logical unit.

Developer’s Guide 134 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetRealtimeClockCount
Get the processing time of a given logical unit.

This function is obsolete.

To get the real-time clock count associated with a PRO-1000 device, use the Device
Function GetRealtimeClockCount(). This requires a PRO_Device object for each
logical unit.

Developer’s Guide 135 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetProcessingTime
Get the processing time of a given logical unit.

This function is obsolete.

To get the processing time associated with a PRO-1000 device, use the Device
Function GetProcessingTime(). This requires a PRO_Device object for each logical
unit.

Developer’s Guide 136 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetFrameRateEstimate
Get the frame update rate of a given logical unit.

This function is obsolete.

To get the frame rate associated with a PRO-1000 device, use the Device Function
GetFrameRateEstimate(). This requires a PRO_Device object for each logical unit.

Developer’s Guide 137 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetPolygonMemorySize
Returns the size of Polygon memory.

long PRO_GetPolygonMemorySize (void) ;

Description

Gets the size in bytes of the polygon area in hardware memory. This value will vary
based on the number of pixel daughter boards in the PRO-1000. The standard polygon
memory is eight megabytes. Each additional polygon memory board (up to 3) adds
eight megabytes of polygon storage capacity. If there is more than one PRO-1000 unit
attached, the smallest polygon memory size across all units will be returned.

Arguments

None.

Return Value

The smallest polygon memory size (in bytes) across all attached PRO-1000 units.

Application Notes

None.

Developer’s Guide 138 Version 4.0e

Function Reference

(Hardware Interface and Global Functions)

PRO_GetDefaultDevice
Returns the default PRO_Device object.

PRO_Device *PRO_GetDefaultDevice (void) ;

Description

Gets a pointer to the PRO_Device object representing the default device.

Arguments

None.

Return Value

A pointer to the PRO_Device object representing the default device.

Application Notes

The characteristics and initial attributes of the default device are described in the
Device section in the Concepts and Object Data Types chapter.

Developer’s Guide 139 Version 4.0e

Function Reference

Device Functions

The Device Class functions are used to assign graphical objects to a specified PRO-1000
device.

(Device Functions)

PRO_Device class constructor
Creates an instance of a PRO_Device.

PRO_Device (long logical _unit, long use_gamma_from _rom) ;

Description

Creates an instance of a PRO_Device. The logical unit number (LUN) reflects the
order in which PRO-1000 units are detected on the SCSI bus, and it is not necessarily
the same as the SCSI ID. For example, two PRO-1000 units on the bus, with SCSI ID’s
5 and 6, would be assigned LUNs 0 and 1.

If a gamma correction table has been stored in ROM for the PRO-1000 device, the
stored table can be used as the initial state for the device. By default, a stored table is
not used. If a stored gamma table is not used, the device inherits its initial gamma
value from the default device, which has an initial gamma value of 1.0.

Arguments

long logical _unit The logical ID of the PRO-1000 unit. Valid
values are 0 through 7, or —1 to specify
broadcast to all attached PRO-1000 units.
The default value is —1.

long use_gamma_from_rom Indicates whether gamma table stored in ROM
should be used when device is instantiated.
This flag defaults to O (false).

Developer’s Guide 140 Version 4.0e

Function Reference

Return Value

None.

Application Notes

Device objects inherit attributes (gamma, foreground and background color, overload
mode and display select) set for the default device before the device is instantiated.

The GetStatus function should be called after object instantiation.

Developer’s Guide 141 Version 4.0e

Function Reference

(Device Functions)

PRO_Device class destructor
Destroys an instance of a PRO_Device.

~PRO_Device (void) ;

Description

Destroys an instance of a PRO_Device.

Arguments

None.

Return Value

None.

Application Notes

Any viewports attached to the PRO_Device being destroyed will be attached to the

default device.

Developer’s Guide

142

Version 4.0e

Function Reference

(Device Functions)

GetStatus
Gets the status of a PRO_Device object instantiation.

PRO_Status GetStatus (void) ;

Description

Returns the status of object instantiation.

Arguments

None.

Return Value

PRO_SUCCESS if object creation was successful.

PRO_INVALID_LUN if an invalid logical unit was specified.
PRO_INVALID_LINE_RATE if the requested display select/line rate combination is not
supported on the device.

Application Notes

If status PRO_INVALID_LINE_RATE is returned, the device has been defaulted to its
first valid sync select.

Developer’s Guide 143 Version 4.0e

Function Reference

(Device Functions)

AttachViewport
Attaches a viewport to a PRO_Device.

PRO_Status AttachViewport (PRO_Viewport *viewport_ptr) ;

Description

Attaches a viewport to a PRO_Device. This defines the PRO-1000 unit that will render
the viewport and its attached scenes. By default, a viewport is rendered on all active
devices.

Arguments

PRO_Viewport *viewport_ptr A pointer to a PRO_Viewport object.

Return Value

PRO_SUCCESS if successful.
PRO_FAILURE if the maximum number of viewports were already attached.

Application Notes

None.

Developer’s Guide 144 Version 4.0e

Function Reference

(Device Functions)

DetachViewport
Detaches a viewport from a PRO_Device.

void DetachViewport (PRO_Viewport *viewport _ptr) ;

Description

Indicates that the viewport should no longer be displayed on a device. Once a viewport
is detached from a specific device, it reverts to being rendered on all active devices.

Arguments

PRO_Viewport *viewport_ptr A pointer to a PRO_Viewport object.

Return Value

None.

Application Notes

None.

Developer’s Guide 145 Version 4.0e

Function Reference

(Device Functions)

SetGamma
Sets the gamma correction for the device.

PRO_Status SetGamma (float gamma, long bank) ;

Description

Sets the gamma correction table for the device using the specified factor as a seed to
calculate the table. The initial setting for the default device is a gamma of 1.0. If the
device is a high—resolution model using a dual display mode, different gamma tables
may be loaded into memory for each channel using the bank argument. Gamma table
processing is activated by this function.

Arguments
float gamma The gamma value for the device.
long bank Where to load the gamma table. This is

selectable only for model 1400 series systems.
Values are —1, 0 or 1. The default value is -1,
which loads the table into both memory banks.

Return Value

PRO_FAILURE if bank 1 was requested for a device that is not a high—resolution
system; PRO_SUCCESS otherwise.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 146 Version 4.0e

Function Reference

(Device Functions)

SetGammaRGB
Sets the gamma correction for the device.

PRO_Status SetGammaRGB (unsigned char *gamma_table red,
unsigned char *gamma_table green,
unsigned char *gamma_table blue,
long bank) ;

Description

Sets the gamma correction table for the device using the specified arrays of intensities
for the red, green, and blue bands. If the device is a high—resolution model using a
dual display mode, different gamma tables may be loaded into memory for each
channel using the bank argument. Gamma table processing is activated by this
function.

Arguments

unsigned char *gamma_table red Pointer to array of values for red band data.
Values in array are 0 to 255.

unsigned char *gamma_table green Pointer to array of values for green band data.
Values in array are 0 to 255.

unsigned char *gamma_table blue Pointer to array of values for blue band data.
Values in array are 0 to 255.
long bank Where to load the gamma table. This is

selectable only for model 1400 series systems.
Values are —1. 0 or 1. The default value is -1,
which loads the table into both memory banks.

Return Value

PRO_FAILURE if bank 1 was requested for a device that is not a high—resolution
system; PRO_SUCCESS otherwise.

Developer’s Guide 147 Version 4.0e

Function Reference

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 148 Version 4.0e

Function Reference

(Device Functions)

ActivateGamma
Turns on gamma table processing.

void ActivateGamma (void) ;

Description

Activates gamma table processing. By default, gamma table processing is active on a
device.

Arguments

None.

Return Value

None.

Application Notes

None.

Developer’s Guide 149 Version 4.0e

Function Reference

(Device Functions)

DeactivateGamma
Turns off gamma table processing.

void DeactivateGamma (void) ;

Description

Deactivates gamma table processing. By default, gamma table processing is active on
a device.

Arguments

None.

Return Value

None.

Application Notes

None.

Developer’s Guide 150 Version 4.0e

Function Reference

(Device Functions)

SaveGammaToROM
Saves table in gamma memory to ROM.

void SaveGammaToROM (void) ;

Description

Stores the table(s) in gamma memory to ROM, for retention between power cycles.

Arguments

None.

Return Value

None.

Application Notes

Use of the stored gamma table is controlled by a flag passed to the PRO_Device
constructor.

Developer’s Guide 151 Version 4.0e

Function Reference

(Device Functions)

WriteBlendMemory
Writes data to blend memory.

PRO_Status WriteBlendMemory (long start i, long start |,
long size_i, long size_j,
unsigned char *bm_data_red,
unsigned char *bm_data_green,
unsigned char *bm_data_blue,
long bank) ;

Description

The blend memory has an entry for each eight pixels of screen space, where each
entry is an attenuation value (for red, green, and blue independently) between 0 and
255. For dual line rates, the blend memory is split vertically into two sections which can
be written individually using the bank argument.

Arguments

long start i Start line, defining upper left corner.

long start_j Start pixel, defining upper left corner.

long size i Number of lines. Values are 1 to 96.

long size j Number of pixels per line. Values are
1to 128.

unsigned char *bm_data_red Pointer to array of values for red band data.
Values in array are 0 to 255.

unsigned char *bm_data_green Pointer to array of values for green band data.
Values in array are 0 to 255.

unsigned char *bm_data_blue Pointer to array of values for blue band data.
Values in array are 0 to 255.

long bank Which blend memory bank to load. Values are
Oorl.

Developer’s Guide 152 Version 4.0e

Function Reference

Return Value

PRO_FAILURE if this function was invoked on a device that is not a high—resolution
system or if the value of bank is not 0 or 1; PRO_SUCCESS otherwise.

Application Notes

This function is valid only on model 1400 series systems.

Developer’s Guide 153 Version 4.0e

Function Reference

(Device Functions)

ActivateBlendMemory
Turns on soft edge blending.

void ActivateBlendMemory (void) ;

Description

Activates soft edge blending. By default, soft edge blending is active on a
high—resolution device.

Arguments

None.

Return Value

None.

Application Notes

This function is valid only for 1400 series systems.

Developer’s Guide 154 Version 4.0e

Function Reference

(Device Functions)

DeactivateBlendMemory
Turns off soft edge blending.

void DeactivateBlendMemory (void) ;

Description

Deactivates soft edge blending. By default, soft edge blending is active on a
high—resolution device.

Arguments

None.

Return Value

None.

Application Notes

This function is valid only for 1400 series systems.

Developer’s Guide 155 Version 4.0e

Function Reference

(Device Functions)

SaveBlendMemoryToROM
Saves table in blend memory to ROM.

void SaveGammaToROM (void) ;

Description

Stores the table(s) in blend memory to ROM, for retention between power cycles.

Arguments

None.

Return Value

None.

Application Notes

This function is valid only for 1400 series systems.

Developer’s Guide 156 Version 4.0e

Function Reference

(Device Functions)

SetForegroundColor
Sets the foreground color for the device.

void SetForegroundColor (long red, long green, long blue) ;

Description

Sets the foreground color for the device using 8-bit color values. The initial setting for
the default device is a black foreground color.

Arguments
long red The intensity of the red component of the color.
Value is zero through 255.
long green The intensity of the green component of the color.
Value is zero through 255.
long blue The intensity of the blue component of the color.

Value is zero through 255.

Return Value

None.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 157 Version 4.0e

Function Reference

(Device Functions)

SetForegroundColor
Sets the foreground color for the device.

void SetForegroundColor (float red, float green, float blue) ;

Description

Sets the foreground color for the device using normalized color values. The initial
setting for the default device is a black foreground color.

Arguments
long red The intensity of the red component of the color.
Value is 0.0 through 1.0.
long green The intensity of the green component of the color.
Value is 0.0 through 1.0.
long blue The intensity of the blue component of the color.

Value is 0.0 through 1.0.

Return Value

None.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 158 Version 4.0e

Function Reference

(Device Functions)

SetBackgroundColor
Sets the background color for the device.

void SetBackgroundColor (long red, long green, long blue) ;

Description

Sets the background color for the device. The initial setting for the default device is a
black background color.

Arguments
long red The intensity of the red component of the color.
Value is zero through 255.
long green The intensity of the green component of the color.
Value is zero through 255.
long blue The intensity of the blue component of the color.

Value is zero through 255.

Return Value

None.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 159 Version 4.0e

Function Reference

(Device Functions)

SetBackgroundColor
Sets the background color for the device.

void SetBackgroundColor (float red, float green, float blue) ;

Description

Sets the background color for the device using normalized color values. The initial
setting for the default device is a black background color.

Arguments
long red The intensity of the red component of the color.
Value is 0.0 through 1.0.
long green The intensity of the green component of the color.
Value is 0.0 through 1.0.
long blue The intensity of the blue component of the color.

Value is 0.0 through 1.0.

Return Value

None.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 160 Version 4.0e

Function Reference

(Device Functions)

SetDisplaySelect
Sets the display sync select.

PRO_Status SetDisplaySelect (PRO_Display_Select display _select,
PRO_Line_Rate line_rate) ;

Description

Sets the display sync select based on the number of displays and the display resolution
(number of pixels x number of lines).

Each PRO-1000 unit is programmed to handle 8 display select/line rate combinations,
which may differ from the standard set of eight in the default firmware. The supported
line rates are as follows:

VGA 640X480 (in default set)

SVGA_1024X768 (in default set)

NTSC_505X480

CGA_512X384

NTSC 512X486 (in default set)
NTSC_640X486 (in default set)
NTSC_720X486 (in default set)
PAL_720X576 (in default set)

Refer to the Hardware Overview section for Display Interface characteristics.

Arguments

PRO_Display_Select display select The number of displays supported by the
graphics engine. Values are
SINGLE_DISPLAY, DUAL_DISPLAY, and
STEREO_DISPLAY.

PRO_Line_Rate line_rate The displayed lines and pixels. Values are
dependent on firmware configuration.

Developer’s Guide 161 Version 4.0e

Function Reference

Return Value

PRO_SUCCESS if successful.
PRO_INVALID_LINE_RATE if the requested display select/line rate combination is not
supported on the device

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

If the requested display select/line rate combination is not supported for this device, the
device will be set to its first valid sync select. For the default firmware, that setting is
SINGLE_DISPLAY, VGA_ 640X480.

For stereo, use the STEREO_DISPLAY display select and the VGA_640X480 line rate.

Developer’s Guide 162 Version 4.0e

Function Reference

(Device Functions)

SetOverloadMode
Sets the realtime processing overload behavior.

PRO_Status SetOverloadMode (PRO_Overload_Mode overload_mode) ;

Description

Sets the realtime processing overload behavior. When OVERLOAD_OFF is defined,
the system will drop polygons in order to maintain the user specified update rate.
When OVERLOAD_ON is defined, the system will halve the frame rate in an overload
condition (60 Hz. will drop to 30 Hz., or 30 Hz. will drop to 15 Hz.). If there is not
enough time to render the scene at half the frame rate, polygons will be dropped.
When EXTENDED_ OVERLOAD is specified, all polygons will be displayed, regardless
of how long it takes. Realtime frame rates are not enforced in extended overload
mode.

Arguments

PRO_Overload_Mode overload mode
The processing overload behavior of the hardware.
Valid values are OVERLOAD_ON, OVERLOAD_OFF, or
EXTENDED_OVERLOAD.

Return Value

PRO_SUCCESS if successful.
PRO_UNSUPPORTED_MODE if an invalid overload mode was provided.

Application Notes

Device objects attributes (gamma, foreground and background color, overload mode
and display select) are initialized to the settings for the default device at the time of the
object’s creation. Changes made to the default device attributes after a device object’s
instantiation will not be propagated to that device.

Developer’s Guide 163 Version 4.0e

Function Reference

(Device Functions)

GetLogicalUnit
Returns the logical unit associated with a PRO_Device.

long GetLogicalUnit (void) ;

Description

Returns the logical unit number to which a device is associated.

Arguments

None.

Return Value

The logical unit number.

Application Notes

None.

Developer’s Guide 164 Version 4.0e

Function Reference

(Device Functions)

IsValidDisplaySelect
Indicates whether selection is valid on this device.

long IsValidDisplaySelect (PRO_Display_Select display_select,
PRO_Line_Rate line_rate) ;

Description

Indicates whether the specified number of displays and display resolution combination
is supported on this device. See SetDisplaySelect() for details about settings.

Arguments

PRO_Display_Select display select The number of displays supported by the
graphics engine. Values are
SINGLE_DISPLAY, DUAL_DISPLAY, and
STEREO_DISPLAY.

PRO_Line_Rate line_rate The displayed lines and pixels. Values are
dependent on firmware configuration.

Return Value

One if combination is valid for this device; zero if combination is invalid.

Application Notes

For stereo, use the STEREO_DISPLAY display select and the VGA_640X480 line rate.

Developer’s Guide 165 Version 4.0e

Function Reference

(Device Functions)

GetSyncSelectinfo
Gets number of displays and line rate associated with the display sync select.

void GetSyncSelectinfo (long sync_select,
PRO_Display_Select &display select,
PRO_Line_Rate &line _rate) ;

Description

Gets the number of displays (single or dual) and the line rate associated with the
display sync select. This function queries the hardware about the display settings it
supports.

Arguments

long sync_select Display sync select, Values are 1 through
PRO_MAX_LINE_RATES.

PRO_Display_Select &display select The number of displays supported by the
graphics engine.

PRO_Line_Rate &line_rate The displayed lines and pixels.

Return Value

None.

Application Notes

None.

Developer’s Guide 166 Version 4.0e

Function Reference

(Device Functions)

HasAttachedViewports
Indicates whether a device has attached viewports.

long HasAttachedViewports (void) ;

Description

Indicates whether a device has any viewports attached.

Arguments

None.

Return Value

One if any viewports are attached.
Zero if no viewports are attached to the device.

Application Notes

None.

Developer’s Guide 167

Version 4.0e

Function Reference

(Device Functions)

GetGamma
Returns the gamma value of the device.

float GetGamma (void) ;

Description

Returns the gamma value of the device.

Arguments

None.

Return Value

The gamma value of the device.

Application Notes

This function is valid only if function SetGamma() was used to set the gamma factor. If
the gamma table was set using the SetGammaRGB() function or was read from ROM,
the gamma factor returned by this function will not match the actual gamma table in

memory.

The GetStatus function will return PRO_GAMMA_NO_MATCH if the gamma table was

not generated using the gamma factor.

Developer’s Guide

168 Version 4.0e

Function Reference

(Device Functions)

GetForegroundColor
Gets the foreground color of the device.

void GetForegroundColor (long &red, long &green, long &blue) ;

Description

Gets the foreground color of the device.

Arguments
long &red The intensity of the red component of the color.
long &green The intensity of the green component of the color.
long &blue The intensity of the blue component of the color.

Return Value

None.

Application Notes

None.

Developer’s Guide 169 Version 4.0e

Function Reference

(Device Functions)

GetBackgroundColor
Gets the background color of the device.

void GetBackgroundColor (long &red, long &green, long &blue) ;

Description

Gets the background color of the device.

Arguments
long &red The intensity of the red component of the color.
long &green The intensity of the green component of the color.
long &blue The intensity of the blue component of the color.

Return Value

None.

Application Notes

None.

Developer’s Guide 170 Version 4.0e

Function Reference

(Device Functions)

GetDisplaySelect
Returns the display mode of the device.

PRO_Display_Select GetDisplaySelect (void) ;

Description

Returns the actual display mode.

Arguments

None.

Return Value

SINGLE_DISPLAY or DUAL_DISPLAY.

Application Notes

This function can be used to determine the display mode if PRO_INVALID _LINE_RATE
was returned from the GetDisplaySelect or GetStatus functions.

Developer’s Guide 171 Version 4.0e

Function Reference

(Device Functions)

GetOverloadMode
Returns the current overload mode.

PRO_Overload_Mode GetOverloadMode (void) ;

Description

Returns the current overload processing mode.

Arguments

None.

Return Value

OVERLOAD_ON, OVERLOAD_OFF, or EXTENDED_OVERLOAD.

Application Notes

None.

Developer’s Guide 172 Version 4.0e

Function Reference

(Device Functions)

GetLineRate
Returns the device line rate.

PRO_Line_Rate GetLineRate (void) ;

Description

Returns the actual device line rate.

Arguments

None.

Return Value

One of the supported line rates. See SetDisplaySelect for details.

Application Notes

This function can be used to determine the display resolution if

PRO_INVALID_LINE_RATE was returned from the GetDisplaySelect or GetStatus

functions.

Developer’s Guide

173

Version 4.0e

Function Reference

(Device Functions)

IsHighRes
Tests for a high resolution system.

long IsHighRes (void) ;
Description

Returns true if the device is a PRO-1400 or PRO-1410.

Arguments

None.

Return Value

1 if the device is a PR0O-1400 or PRO-1410.
0 if the device is not a PRO-1400 or PRO-1410.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 174 Version 4.0e

Function Reference

(Device Functions)

HasExpandedTexture
Tests for expanded texture memory.

long HasExpandedTexture (void) ;

Description

Returns true if the device has expanded texture memory (32 megabytes).

Arguments

None.

Return Value

One if the device has expanded texture memory.
Zero otherwise.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 175 Version 4.0e

Function Reference

(Device Functions)

GetFirmwareRevision
Returns the firmware version of the PRO device.

char* GetFirmwareRevision (void) ;

Description

Returns the firmware version of the PRO device.

Arguments

None.

Return Value

Pointer to a string that contains the firmware version.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 176 Version 4.0e

Function Reference

(Device Functions)

GetModelNumber
Returns the model number of the PRO device.

long GetModelNumber (void) ;

Description

Returns the model number of the PRO device.

Arguments

None.

Return Value

1400 if the device is a PRO-1400 or PRO-1410.
1200 if the device is a PRO-1200 or PRO-1210.

1100 if the device is a PRO-1100 or PRO-1110.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and

Object Data Types chapter for more details about the default device.

Developer’s Guide 177

Version 4.0e

Function Reference

(Device Functions)

GetRealtimeClockCount
Returns the device’s image display processing time.

unsigned long GetRealtimeClockCount (void) ;

Description

Returns the number of hardware clocks that it took to process the last image. This can
be used to determine the stress level of the system.

Arguments

None.

Return Value

Number of clock cycles (30 nanoseconds per cycle)

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 178 Version 4.0e

Function Reference

(Device Functions)

GetProcessingTime
Returns the device’s image display processing time.

float GetProcessingTime (void) ;

Description

Returns the time (in seconds) that it took to process the last image. This can be used
to determine the stress level of the system.

Arguments

None.

Return Value

Returns the time in floating point seconds that it took to process the image.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 179 Version 4.0e

Function Reference

(Device Functions)

GetFrameRateEstimate
Get the device’s frame update rate.

float GetFrameRateEstimate (void) ;

Description

Returns the effective display update rate in frames per second. This can be used to
measure the stress level of the system.

Arguments

None.

Return Value

Returns the frame rate estimate in frames per second.

Application Notes

Status for the default device (logical unit —1) does not exist, since the default device is a
PRO/API concept and not a physical device. If the default device is queried, status for
the first active device will be returned. See the Device section in the Concepts and
Object Data Types chapter for more details about the default device.

Developer’s Guide 180 Version 4.0e

Function Reference

(Device Functions)

GetCurrentFrameCount
Returns the time since the system was initialized.

long